
Building Operable
Systems

Mark Imbriaco
VP, Technical Operations

DigitalOcean
!

Operability?
Operability is the ability to keep … a system … in a
safe and reliable functioning condition, according to

pre-defined operational requirements.
!

In a computing systems environment with multiple
systems this includes the ability of products,

systems and business processes to work together
to accomplish a common task such as finding and

returning availability of inventory for flight.

Collaboration
and

Visibility

Runtime Consistency

• The environment where the software operates must
be consistent.

• This consistency is important both from one deploy
to the next as well as across all nodes in a larger
system.

Configuration Management
• Tools like Puppet, Chef, cfengine, Ansible, etc.

• With great power comes great responsibility.

• Decoupling can be a problem.

• Deploying via config management is not ideal of
cycle time or predictable timing.

• Avoid managing application dependencies with
configuration management as much as possible.

Golden Images

• Strong consistency.

• Immutable infrastructure is appealing.

• Less suitable for applications that have to maintain
local state.

• Containers are an interesting hybrid.

Metric Collection
• “If it moves, graph it.” - Etsy

• Business metrics alongside system metrics.

• Frequency: As often as possible.

• Resolution: As high as possible.

• Retention: As long as possible.

Metric Reporting
• Avoid information overload by keeping dashboards

simple.

• Support intuition and pattern recognition for key
metrics.

• Make collaboration simple. Chat integration,
permalinks.

• Alert from metric values.

Logging
• More is better, sometimes.

• Default to informational, with easy mechanism for
changing log level in running system.

• Standardize log generation and collection across
system components.

• Logs are a data stream, and format plays a huge role
in how well you can gain value from it.

• Use unique identifiers to allow tracing.

Log Formats
• Structure for both human scanning and machine

parsing. Hint: JSON is not scannable.

• Simple key/value pairs in a predictable order is a
great technique.

Aug 12 00:02:11 node123 velocityd[1234]: id=1234 action=execute
 task=add_review args=imbriaco,3 at=start
!
Aug 12 00:02:14 node123 velocityd[1234]: id=1234 action=execute
 task=add_review args=imbriaco,3 at=end

Process Inspection
• Frequently seen as both the first and last resort.

• Lots of tools available from simple like ps to
complex like sysdig, with wide variety in between.

• Most tools are focus on the operating system view
rather than the application context.

• Both passive inspection and active inspection are
important.

Passive Process Inspection
• There is a lot of very valuable information in the process

list, but it is an under-utilized resource.

!

!

• Use the process name field for fun and profit.

% ps auxw|head -1
USER PID %CPU %MEM VSZ RSS TTY STAT STARTED TIME COMMAND
 % ps auxw|grep velocityd
mark 1367 0.0 0.2 2465840 9880 ? S+ 6:02PM 0:00.10 velocityd
mark 1736 0.0 0.0 2432784 608 s002 S+ 10:07PM 0:00.00 grep
velocityd

velocityd: id=1234 action=execute task=add_review args=imbriaco,3 at=start

Active Process Inspection
• Allow introspection into the current running state of

the process.

• Simple HTTP based health check endpoints provide
a lot of leverage.

!

!

• Signal handling for dumping state.

{
 "status": "OK",
 "active_workers": 10,
 "available_workers": 5,
 "queue_depth": 0
}

Resilience Patterns

• Feature Flags & Graceful Degradation

• Circuit Breakers

• Ubiquitous Timeouts

• Backpressure

Feature Flags

• Decorate code with conditionals that allow you to
turn features on and off.

• Not just for development!

• Define critical paths and use feature flags to
protect them.

Circuit Breakers

• Like feature flags, but automated.

• Can have a variety of triggering conditions such as
library call volume, response time, overall system
load.

• Metrics are key.

Timeouts

• Critical for addressing outliers in hot code paths.

• Every external resource call should have a timeout.

• Different timeout categories: Consider connection,
request, response, etc.

Backpressure

• Timeouts and errors can quickly cause thundering
herds.

• Signaling mechanism to tell client when and how it
can retry.

• Client-side back-off with server-side hinting.

Operability Reviews
• Written guidelines and operational standards go a

long way.

• Embedding operations in engineering projects for
ongoing review.

• Go/No-Go Meetings - Everybody gets a vote,
anyone can stop the launch.

• Engineering writes the initial run books, supports
release in production initially.

Failure Testing
• Runbooks should come with failure simulation steps for

validation.

• Runbook validation should be regularly scheduled.

• Executing failure simulation and remediation in a test
environment is a great training tool.

• Automated fault injection with tools like Chaos Monkey is a
fantastic forcing function.

• Testing larger scale failures in Gameday exercises
improves confidence and uncovers latent faults.

Post-Mortems

• Blame doesn’t help.

• Look at systemic issues, not for root cause.

• Actionable - Put due dates on remediation items
and track them.

• Focus on improvement.

Selected Resources
• Release It! Design and Deploy Production Ready

Software  
Michael Nygard

• The Field Guide to Understanding Human Error  
Sydney Dekker

• Resilience Engineering In Practice: A Guidebook  
Erik Hollnagel, et al.

• Web Operations  
John Allspaw, Jesse Robbins (Editors)

