Building Operable
Systems

Mark Imbriaco
VP, Technical Operations
DigitalOcean

Operability?

Operability is the ability to keep ... a system ... in a
safe and reliable functioning condition, according to
pre-defined operational requirements.

In a computing systems environment with multiple
systems this includes the ability of products,
systems and business processes to work together
to accomplish a common task such as finding and
returning availability of inventory tor tlight.

Collaboration
ana
Visibility

Runtime Consistency

* The environment where the software operates must
be consistent.

* This consistency is important both from one deploy
to the next as well as across all nodes in a larger
system.

Configuration Management

* Tools like Puppet, Chef, ctengine, Ansible, etc.
 With great power comes great responsibility.
* Decoupling can be a problem.

* Deploying via config management is not ideal of
cycle time or predictable timing.

* Avoid managing application dependencies with
configuration management as much as possible.

Golden Images

Strong consistency.
Immutable infrastructure is appealing.

Less suitable for applications that have to maintain
local state.

Containers are an interesting hybrid.

Metric Collection

“If it moves, graph it.” - Etsy

Business metrics alongside system metrics.
Frequency: As often as possible.
Resolution: As high as possible.

Retention: As long as possible.

Metric Reporting

Avoid information overload by keeping dashboards
simple.

Support intuition and pattern recognition for key
metrics.

Make collaboration simple. Chat integration,
permalinks.

Alert from metric values.

Logging

More IS better, sometimes.

Default to informational, with easy mechanism for
changing log level In running system.

Standardize log generation and collection across
system components.

Logs are a data stream, and format plays a huge role
in how well you can gain value from it.

Use unique identitiers to allow tracing.

| 0g Formats

e Structure for both human scanning and machine
parsing. Hint: JSON is not scannable.

e Simple key/value pairs in a predictable order is a
great technique.

Aug 12 00:02:11 nodel23 velocityd[1234]: id=1234 action=execute
task=add review args=imbriaco,3 at=start

Aug 12 00:02:14 nodel23 velocityd[1234]: id=1234 action=execute
task=add review args=imbriaco,3 at=end

Process Inspection

Frequently seen as both the first and last resort.

Lots of tools available from simple like ps to
complex like sysdig, with wide variety in between.

Most tools are focus on the operating system view
rather than the application context.

Both passive inspection and active inspection are
important.

Passive Process Inspection

* There is a lot of very valuable information in the process

liIst, but It IS an under-utilized resource.

% ps auxw|head -1

USER PID %CPU $MEM VSZ RSS TTY STAT STARTED
% ps auxw|grep velocityd

mark 1367 0.0 0.2 2465840 9880 ? S+ 6:02PM

mark 1736 0.0 0.0 2432784 608 s002 S+ 10:07PM

velocityd

* Use the process name field for fun and profit.

TIME COMMAND

0:00.10 velocityd
0:00.00 grep

velocityd: id=1234 action=execute task=add review args=imbriaco,3 at=start

Active Process Inspection

* Allow introspection into the current running state of
the process.

 Simple HTTP based health check endpoints provide

a lot of leverage.

"status": "OK'",
"active workers":
"available workers":
"queue depth":

» Signal handling for dumping state.

Resilience Patterns

Feature Flags & Graceful Degradation
Circuit Breakers
Ubiquitous Timeouts

Backpressure

~eature rlags

 Decorate code with conditionals that allow you to
turn features on and off.

* Not just for development!

* Detine critical paths and use feature flags to
porotect them.

Circuit Breakers

e |ike feature flags, but automated.

 Can have a variety of triggering conditions such as
ibrary call volume, response time, overall system
load.

 Metrics are key.

Timeouts

e Critical for addressing outliers in hot code paths.
* Every external resource call should have a timeout.

e Different timeout categories: Consider connection,
request, response, etc.

Backpressure

* [imeouts and errors can quickly cause thundering
herds.

e Signaling mechanism to tell client when and how it
can retry.

* Client-side back-off with server-side hinting.

Operability Reviews

Written guidelines and operational standards go a
long way.

Embedding operations in engineering projects for
ongoIing review.

Go/No-Go Meetings - Everybody gets a vote,
anyone can stop the launch.

Engineering writes the initial run books, supports
release in production initially.

Faillure Testing

Runbooks should come with failure simulation steps for
validation.

Runbook validation should be regularly scheduled.

Executing failure simulation and remediation in a test
environment is a great training tool.

Automated fault injection with tools like Chaos Monkey is a
fantastic forcing function.

Testing larger scale failures in Gameday exercises
improves confidence and uncovers latent tfaults.

Post-Mortems

Blame doesn't help.
Look at systemic issues, not for root cause.

Actionable - Put due dates on remediation items
and track them.

Focus on improvement.

Selected Resources

Release It! Design and Deploy Production Ready
Software
Michael Nygard

The Field Guide to Understanding Human Error
Sydney Dekker

Resilience Engineering In Practice: A Guidebook
Erik Hollnagel, et al.

Web Operations
John Allspaw, Jesse Robbins (Editors)

