
Javascript
Performance

in the Browser
Charlie Fiskeaux II

User Interface Engineer

About Me & Circonus

§  Lead User Interface Engineer for Circonus
§  Industry-leading monitoring and analytics platform
§  We deploy over 1 MB of Javascript
§  Our customers: technical Chiefs of Operations

Performance + Maintainability

Look to the Past

Behavioral Separation

§  Web UI is in three layers:
1)  Content Layer – HTML
2)  Presentation Layer – CSS
3)  Behavior Layer – JS

§  Gray (in-between) areas are ok

Content Layer

§  Don’t use inline styles or event handlers

§  Having inline styles and event handlers mixes up your layers:
-  No context
-  No documentation
-  No high-level overview

Presentation Layer

§  Easy to keep clean, but hard to keep in one place
§  Let stylesheets do their job, don’t let Javascript take over

Behavior Layer (Don’t Mix with Content)

§  Don’t build the content layer with Javascript (page templates, etc.)
§  Building content in Javascript is 3-5 times slower than doing it on the server

http://openmymind.net/2012/5/30/Client-Side-vs-Server-Side-Rendering/
§  Don’t mix HTML strings into your Javascript – they can’t be obfuscated
§  Minimize all strings in your JS (e.g. classNames)
 var a_class = “active”,
 is_active = $link.hasClass(a_class);
 $table.addClass(a_class);

Behavior Layer (Don’t Mix with Presentation)

§  Libraries like jQuery make it easy to mix behavior and presentation,
but DON’T DO IT

§  Visual appearance is NOT the realm of Javascript
§  Decouple (un-link) visual appearance from behavior controls

Behavior Layer (Working with Presentation)

§  Javascript should only change the state of elements
 $link.addClass(“active”);

§  CSS will then look at the state and change the visual appearance
 .link { color: black; }
 .link.active { color: red; }

Keep Behavior Layer Clean (for the Future)

§  It’s all about maintenance
§  Don’t allow cruft to accumulate in your codebase
§  Maintenance doesn’t make your application faster TODAY,

but it does prevent it from slowing down TOMORROW

Now Back to the Future
(for some practical tips)

Operating in the Browser

§  Don’t worry about micro-performance tweaks
§  Document == traffic jam
§  Touch the document as seldom as possible

Save References to Everything

§  Get element references as soon as possible (at load time)
 var $table = $(“.table-one”),
 $form = $(“#login-form”);

§  Save attribute values & property values
 var old_h = $link.attr(‘href’),
 prefix = old_h.match(/^https/) ? “secure:” : “”;
 $link.text(prefix + old_h);

Use Fast Selectors

§  Don’t use modern query selector methods
 querySelector()
 querySelectorAll()

§  Use older dedicated methods
 getElementById()
 getElementsByClassName()

§  Even libraries like jQuery use these methods

Goodbye, Javascript Transitions

§  Until recently, Javascript was our only option for transitions
§  Anything is possible, but at a performance cost
§  Not great for mobile – mobile Javascript is VERY slow:

http://sealedabstract.com/rants/why-mobile-web-apps-are-slow/

Welcome, CSS Transitions!

§  Widely compatible with modern browsers
(Internet Explorer 7 - 9 are the exceptions)

§  Not for cartoon animations, just to give polish to your interface
§  Most numeric properties can be transitioned, including colors
§  Still requires prefixes
 -moz-transition: width 0.5s ease-out;
 -webkit-transition: width 0.5s ease-out;
 -o-transition: width 0.5s ease-out;
 transition: width 0.5s ease-out;

TransitionEnd Event

§  You can listen for when transitions are finished
§  Be careful of multiple events
§  Still requires prefixes
 webkitTransitionEnd
 oTransitionEnd
 otransitionend
 transitionend

Transitioning to “Auto”
§  “height: auto;” cannot be transitioned to / from
§  Use “max-height” with “overflow: hidden;” for clipping:
 .menu {
 height: auto;
 max-height: 0;
 overflow: hidden;
 transition: max-height 0.5s ease-out;
 }
 .menu.active {
 max-height: 10em;
 }

Pitfall #1: Memory Usage

§  Most developers don’t pay attention to memory usage (Garbage Collection is
automatic, but computationally expensive)

§  Plotting graphs on canvas elements with Flot:
1000 x 300 px = 300 k px … x2 = 600 k px or 2.4 MB per graph

§  Graphs are re-plotted every 5 minutes, for hours / days

“Some people, when confronted
with one problem, think
‘I know, I’ll use regular expressions.’

“Now they have two problems.”

Pitfall #2: Regular Expressions

§  Rewriting a function which tokenized a formula, and
decided to try Regular Expressions (RegExp)

§  Pulling sets of letters out of a formula: /\b[a-z]+\b(?!\()/
§  Tested beforehand to get a performance baseline
§  With RegExp, Firefox was 4% slower
§  With RegExp, Chrome was 250% slower!

Always test, never assume…
What happens when you assume?

assume = “ass” + u + me

THANK YOU

