
Developing & Maintaining
Large Javascript

Applications
Charlie Fiskeaux II

User Interface Engineer

About Me & Circonus

§  Lead User Interface Engineer for Circonus
§  Industry-leading monitoring and analytics platform
§  We deploy over 1 MB of Javascript
§  Our customers: technical Chiefs of Operations

Phase 1: Getting Javascript to the Browser

§  Concatenate Javascript files and CSS files
§  Minify and obfuscate Javascript, minify CSS:

YUI Compressor, JSMin, Packer, UglifyJS, Google’s Closure Compiler
§  Serve with gzip compression
§  Insert <script /> elements immediately before </body> tag

Phase 2: Choices

§  “Framework A” versus “Framework B”
§  “Technique 1” versus “Technique 2”
§  Educate yourself and make your own decisions

Javascript in Circonus

§  Do not build page content in the browser
§  Building content on the server is 3-5 times faster:

http://openmymind.net/2012/5/30/Client-Side-vs-Server-Side-Rendering/
§  Use Javascript to add functionality on top of content

Start with Structure

§  Frameworks are restricting
§  Focus on your app, not your framework
§  Circonus needs flexibility to handle a wide variety of content

Choose a Namespace

§  Global “circonus” object
§  Sub-objects grouped logically (e.g. “circonus.graphs”)
§  Break logical groupings into their own files (e.g. “circonus.graphs.js”)
§  Don’t get too complicated, this is just to help you
§  Use an automated build script to minify, obfuscate, & concatenate

the files back together when deploying

Basic Building Blocks

§  There are many design patterns: module, composite, et al,
but I don’t favor one in particular

§  The most basic unit is the Function
§  Functions can do it all:

-  They have their own variable scope
-  Allow class-like structuring using prototypal inheritance,

allowing public & private properties / methods

Three Ways I Use Functions

1)  Page initialization functions
2)  Utility functions
3)  Component functions

Page Initialization Functions

§  Called at the bottom of the page:
one of only two points where there is Javascript in our HTML

§  Contains procedural code to setup bindings and other functionality
§  In Perl templates:
 $request->page_js(“circonus.graphs.initPage();”)

All JS is thus collected throughout the template and is output in a single <script /
> tag at the bottom of the page.

Utility Functions

§  Keep them in their own namespace: circonus.utilities
§  Contain snippets: repeated procedures
§  Reduce overall Javascript file size

Component Functions

§  Tied to page elements
§  Look for repeated objects (patterns) in your page structure
§  I have two classifications:

1)  Tracking functions (using closures)
2)  Constructor functions

Components: Tracking Functions

§  Most useful when matched by backend components
§  Example: a toolbar for graphs

-  graph_date_tool.inc calls circonus.graphs.initDateTool()
(this is the second point where there is Javascript in our HTML)

-  Enables easy use of closures:
 circonus.graphs.initDateTool = function() {
 var $tools = [];
 return function init() { /*do things here*/ }
 }();

Components: Constructor Functions

§  Called with the “new” keyword (e.g. “new circonus.Graph()”)
§  Most useful for multiples of objects (great for encapsulating config data)
§  Enables prototypal inheritance (saves memory)
 circonus.Graph = function Graph(cfg) {
 this.destroy = destroy;
 function destroy() { /*destroy bindings here*/ }
 return this;
 };
 circonus.Graph.prototype.gotoView = function gotoView(){};

Be Wary of Whole Libraries

§  Don’t add extra libraries without consideration
§  Our goal: keep total Javascript size as small as possible
§  Always ask:

-  Could I write this functionality?
(specialized code is smaller than generic code)

-  Can I cut out parts?
(leave documentation if you chop it up)

§  Github forking makes it easy to maintain parallel branches of libraries

Documentation and White Space

§  Why don’t we document? Bad habits…? Wasted time…?
§  Spend 1 minute now to save 2 minutes later
§  Documentation and white space are crucial for large applications
§  Personal testimony: “future you” will thank yourself!

Continuous Deployment

§  Deploy updates daily or weekly with Git
§  Near-instant bug fixes
§  Improve complex features over time (example: our new tags feature)

Feature Flags

§  JSON config file detailing features to toggle
 { features:{ tags:{ default:0, force:0 } } }

§  Hidden page with toggle switches
§  A cookie tracks which features are enabled,

with body classNames for CSS hooks
§  Allows us to block unfinished features or

release features as “beta” features to select customers

Dev Mode Feature

§  Toggles between development code and built code
(minified, obfuscated & concatenated)

§  Allows debugging on live production server
§  Debug with 20 development scripts instead of 1 production script

Message Center (PubSub)

§  Simplifies and clarifies communication
§  DOM events:

-  OK when document elements are involved
-  Too slow and decentralized for general communication

(event bubbling)

How PubSub Works

§  Only three methods:
-  message_center.subscribe(‘namespace’, callback)
-  message_center.unsubscribe(‘namespace’, callback)
-  message_center.publish(‘namespace’, ‘message’)

§  Subscriptions are namespaced (“graphs” versus “graphs.toolbar”)
§  No longer need a dozen custom event bindings

Multiple Concurrent Sessions

§  Needed a way to track multiple tabs
§  Each tab has its own set of filters (filtered by tags)
§  When navigating in a tab, it should keep its own filters

Each Tab Needs an Identity

§  Setting a window property (window.id) didn’t stick
§  localStorage is too global and persists beyond the session
§  sessionStorage lasts for the entire session

but is only available to the current tab

Talk to the Back-End

§  A cookie tracks which tab is visible
§  Tab “focus” event sets that tab as the visible tab in the cookie
§  Data can be saved as pertaining to only the visible tab,

then matched to the visible tab upon page load

Problem #1: Loading in the Background

§  When a tab loads, it normally sets its ID as the visible tab
§  Check for visibility at load time
§  Hidden tabs shouldn’t set their IDs as visible tabs
§  Check for visibility with the Page Visibility API
var prop_name = undefined !== document.mozHidden ? ‘mozHidden’
 : undefined !== document.webkitHidden ? ‘webkitHidden’
 : undefined !== document.msHidden ? ‘msHidden’
 : ‘hidden’,
 is_hidden = document[prop_name];

Problem #2: Refreshing in the Background

§  If content is loaded in a background tab, the cookie will have the wrong ID
§  Hidden tabs shouldn’t load or refresh content
§  Check for visibility with the Page Visibility API
var prop_name = undefined !== document.mozHidden ? ‘mozHidden’
 : undefined !== document.webkitHidden ? ‘webkitHidden’
 : undefined !== document.msHidden ? ‘msHidden’
 : ‘hidden’,
 is_hidden = document[prop_name];

THANK YOU

