O REILLY®

Velocit

China 2013
WebiltgES iiﬁ?c%

A

avw

Chromium Resource
Scheduling

— by William Chan (FfR& &)
Beijing, China . .
LS. \villchan@{chromium.org,google.com}

’

Thursday, August 22, 13

Overview

* Resource scheduling refers to the decision logic for how /
when to request resources

* The primary goal of browser resource scheduling is to
optimize the “"page load experience” (make it fast)

= Difficulties
- Unclear what load ordering improves the user experience
- Need to discover resources first before they can be loaded
- Fetching multiple resources may introduce contention

- Many more!

b Performance

——

uuuuuuuuuuuuuuuuuuuu

An aside: What does “fast” mean?
= Time to first paint”?

- Browsers will wait for stylesheets in <head> to download
before first paint, in order to prevent FOUC

= Time until most of the above the fold content is visible?

* Time until all page assets are loaded?
* Time until the page becomes interactive/usable?

- Many scripts will wait until the DOMContentLoaded event or
load event before running script / installing event handlers /
etc

Velo‘c‘ity

Web Performa
and Operations

A_.-a-"’"'d

Thursdy uuuuuuuuuuu

Problem: Network is slow
* Network roundtrip latency is high

- DNS lookups are slow
- TCP connection latencies are slow
- HT TP roundtrips are slow
- Speed of light is not getting faster
* Page download time Is slow
- Pages/resources are getting bigger

- Bandwidth is improving, but many users are still on slow
connections

DNS latency stats from Chrome 28

DNS Successful Lookup Times CDF

ﬂ

-

.I A c” od o~ '
NVindows

» !

and Operations —

Thursday, August 22, 13

TCP latency stats from Chrome 28

TCP Connection Latency CDF

B Windows

Web Performance *
and Operations —

Thursday, August 22, 13

Total transfer time (HTTP Archive)

Total Transfer Size & Total Requests

/ Web Performance

S and Operations —
™ - -

Thursday, August 22, 13

Solution: Fetch resources ASAP

= [f the network’s slow, the solution is to discover all the
resources and begin fetching them as soon as possible.

* Browser implementors to the rescue: speculative parsing!

- While the HTML parser is blocked waiting for a script or
stylesheet to download, the speculative parser looks ahead
in the HTML for resources to download

- In JTony Gentilcore's test, it sped up the Alexa top 75
websites by 20%

e Velocity

Web Performa
and Operations

Thursday, August 22, 13

http://gent.ilcore.com/2011/01/webkit-preloadscanner.html
http://gent.ilcore.com/2011/01/webkit-preloadscanner.html

Problem: Contention
= Major issue is bandwidth contention

- Each new TCP connection will contend with existing TCP
connections for available bandwidth

- TCP tries to be “fair’

- If there are X TCP connections, TCP tries to give each
connection 1/X of available bandwidth.

* Fairness is a good thing though, right??

Resources are not created equal!

= Some resources let you discover other resources to fetch (e.g. scripts
using XHR, iframes referencing other resources)

= Some resources block parsing (e.g. script, stylesheets)
= Stylesheets will block first paint (prevent FOUC)

= Some resources are more visually important than others (e.g. above the
fold images)

= Some resources must be processed in entirety (e.g. JS), whereas some
can be incrementally processed (e.g. HTML)

= Some parts of resources are more important than others (e.g. image
headers, progressive images)

= etc, etc

OREILLY*

| Vglﬁq:city‘
ﬂ

uuuuuuuuuuuuuuuuuuuu

Using fewer connections

= TCP will try to give each of X connections 1/X of the avalilable
bandwidth

- Therefore, the obvious solution is reduce X
- This Is one reason browsers limit connections per host to 6

- Resource fetches will sit in priority queues waiting for
available connections

- Browsers will also only fetch high priority resources before
first paint, in order to reduce contention and paint sooner

Solution: Resource Prioritization

= Basic approach: prioritize by resource type (e.g. document/
script/stylesheet/etc) and then by discovery order (roughly
parse order)

“HTML > CSS > JS > Images

- Just a naive heuristic, it's generally good, but sometimes
bad

= But since TCP tries to be fair, how do we actually implement
prioritization?

Does contention matter?
Case study: gap.com:

Chrome Only High Priority Chrome All Resources

4 :v)j’ 0 @ o y) ﬂ}‘”
'm PR ¢ g ¥
& a i ! o .
ly b SO 't % ey 3‘ ﬁ\..‘

Wet;Performance
and Operations —

http://www.webpagetest.org/video/compare.php?tests=121020_83_BF0-l:Chrome+Only+High+Priority,121020_1C_BF5-l:Chrome+All+Resources
http://www.webpagetest.org/video/compare.php?tests=121020_83_BF0-l:Chrome+Only+High+Priority,121020_1C_BF5-l:Chrome+All+Resources

Problem: Underutilization

If we use too few connections, then we might not fully utilize
the available bandwidth. May slow down overall page load.

A)

4 N\ o

—

SPDY & HTTP/2 to the rescue!

*SPDY introduces prioritized multiplexing within a single
connection.

- Each request is tagged with an advisory priority

- The server maintains a priority queue for ordering its
responses

- Now the browser doesn't have to issue fewer resource
fetches, it can fetch all the resources simultaneously and the
server will send them back in priority order.

SPDY Prioritization Example

= Chrome 26 vs Chrome 29 (Chrome 29 disables the resource
scheduler logic for SPDY))

http://www.webpagetest.org/video/compare.php?tests=130520_21_XDP,130520_VV_XE5-r:1-c:0
http://www.webpagetest.org/video/compare.php?tests=130520_21_XDP,130520_VV_XE5-r:1-c:0

SPDY Prioritization Example

= Chrome 26 vs Chrome 29 (Chrome 29 disables the resource
scheduler logic for SPDY))

chrome26 chrome229

http://www.webpagetest.org/video/compare.php?tests=130520_21_XDP,130520_VV_XE5-r:1-c:0
http://www.webpagetest.org/video/compare.php?tests=130520_21_XDP,130520_VV_XE5-r:1-c:0

Problem: Contention again!

= Chromium’s current prioritization by resource type is too
coarse-grained

= Examples
- Certain images are more important than other images
- <script> should be loaded In parse order.

- Image headers are more important than the image bodies,
since they affect layout

Better image prioritization

" |[t's impossible to know what is "above the fold™ until layout
happens, but that's too late.

= Sometimes images aren't fetched in parse order, since image
loads may be Initiated by stylesheets, which the speculative
parser doesn't query.

= Rough heuristics
- What about fixing image prioritization to match parse order?

- What about assuming that the first images are more important
than the later ones, so set a max concurrency limit for
images?

Velo’c‘it Ly

Web Performa
and Operatlons

Thursday, August 22, 13

Deprioritizing preloaded images

*\When the speculative parser preloads an image, preload it at
a lower priority than normal images. \When the normal parser
catches up, reprioritize the preloaded image back to normal.

= Example: bridepower.com

- Navigation bars have background-images

http://www.webpagetest.org/video/compare.php?thumbSize=200&ival=100&end=doc&tests=130301_GA_1R3A-l:Normal,130301_QV_1R3C-l:Demote+Preload
http://www.webpagetest.org/video/compare.php?thumbSize=200&ival=100&end=doc&tests=130301_GA_1R3A-l:Normal,130301_QV_1R3C-l:Demote+Preload

Limiting concurrent image fetches

* The idea Is that the first images are more important than later
Images.

= |[f Chromium limits the # of concurrent image fetches, it will
prioritize earlier images.

= |f the concurrency limit is too low, we get underutilization.
= |f the concurrency limit is too high, we get contention again.

* Experiments show that a limit of 10 is a pretty good number
In today's web.

. Vsl,g,.“cﬂv’

. - and Operatio

uuuuuuuuuuuuuuuuuuuu

Summarizing the information so far

= Resource discovery enables the browser to begin downloading
resources sooner, which is important to achieve high bandwidth

utilization
= Resource discovery may also lead to contention
* Chromium heuristically prioritizes resources based on type

- With HTTP/1.X, browsers only have crude mechanisms for
trying to prioritize resource fetches, often running the risk of

underutilizing bandwidth

- Browsers can more effectively implement prioritization in

SPDY & HTTP/2, without the risk of underutilization

Velocit

and Operations /

uuuuuuuuuuuuuuuuuuuu

Advice for Web Developers

= Generally speaking, it's a good idea to enable the browser to discover
your resources sooner

- Fetching resources via declarative HTML markup enables the

speculative parser to discover the resource even when parsing Is
blocked.

- Protip: Chromium supports <link rel=subresource> which enables
the parser to discover resources sooner. The problem with it is it
lacks resource type info, so the browser doesn't have a good idea
how to prioritize .

- Fetching resources via script and other mechanisms prevents the
speculative parser from fetching them earlier.

Velo’c‘it Ly

Web Performa
and Operatlons

Thursday, August 22, 13

Advice for Web Developers - 2

= Avoid hiding/munging the resource type from the browser

- Becomes especially important with SPDY & HTTP/2

- Examples of hiding/munging the resource type
- Fetching via XHR and dynamically inserting in the DOM
- Using an iframe to load inline <script>

- Case study: Gmail (used JS in iframe and CSS via XHR)
- Asked why CSS always finished slower than JS

- Case study: Google+ (fetched CSS via XHR instead of <link>)
- Chrome speedup: 4x speedup at the median, and 5x at 25th percentile
- Firefox speedup: 5x speedup at median, and 8x at 25th percentile

/

b Performance

. 4.-4

https://plus.google.com/104404461680012191607/posts/Uw87yxQFCfY
https://plus.google.com/104404461680012191607/posts/Uw87yxQFCfY

Advice for Web Developers - 3
= \Watch out for contention within the same resource type

-SPDY & HTTP/2 doesn't fix it...yet? TBD

= <script src="core.js ></script>
<script src="enhance.|s"></script>
<script src="enhance_more.js></script>
<script src="enhance even more.|s"></script>

- [deally, these should be downloaded In parse order, but
currently even with SPDY & HTTP/2 they'll contend

Future Work

* Analyze why the preconnect experiment showed no gains

- We hold back lower priority requests at some points, but
speculatively preconnecting *should™ help hide latency

* Experiment with dynamically adjusting the image download
concurrency limit

= Experiment with trying to leverage more information

- Does the browser know RTT or available bandwidth? Tweak
limits accordingly.

le

~ andOperatio

uuuuuuuuuuuuuuuuuuuu

