
Chromium Resource 
Scheduling

by William Chan (陳智昌)
willchan@{chromium.org,google.com}

Thursday, August 22, 13



Overview
§Resource scheduling refers to the decision logic for how /

when to request resources
§The primary goal of browser resource scheduling is to 

optimize the “page load experience” (make it fast)
§Difficulties
- Unclear what load ordering improves the user experience
- Need to discover resources first before they can be loaded
- Fetching multiple resources may introduce contention
- Many more!

Thursday, August 22, 13



An aside: What does “fast” mean?
§Time to first paint?
- Browsers will wait for stylesheets in <head> to download 

before first paint, in order to prevent FOUC
§Time until most of the above the fold content is visible?
§Time until all page assets are loaded?
§Time until the page becomes interactive/usable?
- Many scripts will wait until the DOMContentLoaded event or 

load event before running script / installing event handlers /
etc

Thursday, August 22, 13



Problem: Network is slow
§Network roundtrip latency is high
- DNS lookups are slow
- TCP connection latencies are slow
- HTTP roundtrips are slow
- Speed of light is not getting faster

§Page download time is slow
- Pages/resources are getting bigger
- Bandwidth is improving, but many users are still on slow 

connections

Thursday, August 22, 13



DNS latency stats from Chrome 28

Thursday, August 22, 13



TCP latency stats from Chrome 28

Thursday, August 22, 13



Total transfer time (HTTP Archive)

Thursday, August 22, 13



Solution: Fetch resources ASAP
§ If the network’s slow, the solution is to discover all the 

resources and begin fetching them as soon as possible.
§Browser implementors to the rescue: speculative parsing!
- While the HTML parser is blocked waiting for a script or 

stylesheet to download, the speculative parser looks ahead 
in the HTML for resources to download

- In Tony Gentilcore’s test, it sped up the Alexa top 75 
websites by 20%

Thursday, August 22, 13

http://gent.ilcore.com/2011/01/webkit-preloadscanner.html
http://gent.ilcore.com/2011/01/webkit-preloadscanner.html


Problem: Contention
§Major issue is bandwidth contention
- Each new TCP connection will contend with existing TCP 

connections for available bandwidth
- TCP tries to be “fair”
- If there are X TCP connections, TCP tries to give each 

connection 1/X of available bandwidth.
§Fairness is a good thing though, right?

Thursday, August 22, 13



Resources are not created equal!
§ Some resources let you discover other resources to fetch (e.g. scripts 

using XHR, iframes referencing other resources)
§ Some resources block parsing (e.g. script, stylesheets)
§ Stylesheets will block first paint (prevent FOUC)
§ Some resources are more visually important than others (e.g. above the 

fold images)
§ Some resources must be processed in entirety (e.g. JS), whereas some 

can be incrementally processed (e.g. HTML)
§ Some parts of resources are more important than others (e.g. image 

headers, progressive images)
§ etc, etc

Thursday, August 22, 13



Using fewer connections
§TCP will try to give each of X connections 1/X of the available 

bandwidth
- Therefore, the obvious solution is reduce X
- This is one reason browsers limit connections per host to 6
- Resource fetches will sit in priority queues waiting for 

available connections
- Browsers will also only fetch high priority resources before 

first paint, in order to reduce contention and paint sooner

Thursday, August 22, 13



Solution: Resource Prioritization
§Basic approach: prioritize by resource type (e.g. document/

script/stylesheet/etc) and then by discovery order (roughly 
parse order)
- HTML > CSS > JS > Images
- Just a naive heuristic, it’s generally good, but sometimes 

bad
§But since TCP tries to be fair, how do we actually implement 

prioritization?

Thursday, August 22, 13



Does contention matter?
Case study: gap.com:

Thursday, August 22, 13

http://www.webpagetest.org/video/compare.php?tests=121020_83_BF0-l:Chrome+Only+High+Priority,121020_1C_BF5-l:Chrome+All+Resources
http://www.webpagetest.org/video/compare.php?tests=121020_83_BF0-l:Chrome+Only+High+Priority,121020_1C_BF5-l:Chrome+All+Resources


Problem: Underutilization
If we use too few connections, then we might not fully utilize 
the available bandwidth. May slow down overall page load.

Thursday, August 22, 13



SPDY & HTTP/2 to the rescue!
§SPDY introduces prioritized multiplexing within a single 

connection.
- Each request is tagged with an advisory priority
- The server maintains a priority queue for ordering its 

responses
- Now the browser doesn’t have to issue fewer resource 

fetches, it can fetch all the resources simultaneously and the 
server will send them back in priority order.

Thursday, August 22, 13



SPDY Prioritization Example
§Chrome 26 vs Chrome 29 (Chrome 29 disables the resource 

scheduler logic for SPDY)

Thursday, August 22, 13

http://www.webpagetest.org/video/compare.php?tests=130520_21_XDP,130520_VV_XE5-r:1-c:0
http://www.webpagetest.org/video/compare.php?tests=130520_21_XDP,130520_VV_XE5-r:1-c:0


SPDY Prioritization Example
§Chrome 26 vs Chrome 29 (Chrome 29 disables the resource 

scheduler logic for SPDY)

Thursday, August 22, 13

http://www.webpagetest.org/video/compare.php?tests=130520_21_XDP,130520_VV_XE5-r:1-c:0
http://www.webpagetest.org/video/compare.php?tests=130520_21_XDP,130520_VV_XE5-r:1-c:0


Problem: Contention again!
§Chromium’s current prioritization by resource type is too 

coarse-grained
§Examples
- Certain images are more important than other images
- <script> should be loaded in parse order.
- Image headers are more important than the image bodies, 

since they affect layout
- ...

Thursday, August 22, 13



Better image prioritization
§ It’s impossible to know what is “above the fold” until layout 

happens, but that’s too late.
§Sometimes images aren’t fetched in parse order, since image 

loads may be initiated by stylesheets, which the speculative 
parser doesn’t query.

§Rough heuristics
- What about fixing image prioritization to match parse order?
- What about assuming that the first images are more important 

than the later ones, so set a max concurrency limit for 
images?

Thursday, August 22, 13



Deprioritizing preloaded images
§When the speculative parser preloads an image, preload it at 

a lower priority than normal images. When the normal parser 
catches up, reprioritize the preloaded image back to normal.

§Example: bridepower.com
- Navigation bars have background-images

Thursday, August 22, 13

http://www.webpagetest.org/video/compare.php?thumbSize=200&ival=100&end=doc&tests=130301_GA_1R3A-l:Normal,130301_QV_1R3C-l:Demote+Preload
http://www.webpagetest.org/video/compare.php?thumbSize=200&ival=100&end=doc&tests=130301_GA_1R3A-l:Normal,130301_QV_1R3C-l:Demote+Preload


Limiting concurrent image fetches
§The idea is that the first images are more important than later 

images.
§ If Chromium limits the # of concurrent image fetches, it will 

prioritize earlier images.
§ If the concurrency limit is too low, we get underutilization.
§ If the concurrency limit is too high, we get contention again.
§Experiments show that a limit of 10 is a pretty good number 

in today’s web.

Thursday, August 22, 13



Summarizing the information so far
§Resource discovery enables the browser to begin downloading 

resources sooner, which is important to achieve high bandwidth 
utilization

§Resource discovery may also lead to contention
§Chromium heuristically prioritizes resources based on type

- With HTTP/1.X, browsers only have crude mechanisms for 
trying to prioritize resource fetches, often running the risk of 
underutilizing bandwidth

- Browsers can more effectively implement prioritization in 
SPDY & HTTP/2, without the risk of underutilization

Thursday, August 22, 13



Advice for Web Developers
§Generally speaking, it’s a good idea to enable the browser to discover 

your resources sooner
- Fetching resources via declarative HTML markup enables the 

speculative parser to discover the resource even when parsing is 
blocked.
- Protip: Chromium supports <link rel=subresource> which enables 

the parser to discover resources sooner. The problem with it is it 
lacks resource type info, so the browser doesn’t have a good idea 
how to prioritize it.

- Fetching resources via script and other mechanisms prevents the 
speculative parser from fetching them earlier.

Thursday, August 22, 13



Advice for Web Developers - 2
§ Avoid hiding/munging the resource type from the browser

- Becomes especially important with SPDY & HTTP/2
- Examples of hiding/munging the resource type

- Fetching via XHR and dynamically inserting in the DOM
- Using an iframe to load inline <script>

- Case study: Gmail (used JS in iframe and CSS via XHR)
- Asked why CSS always finished slower than JS

- Case study: Google+ (fetched CSS via XHR instead of <link>)
- Chrome speedup: 4x speedup at the median, and 5x at 25th percentile
- Firefox speedup: 5x speedup at median, and 8x at 25th percentile

Thursday, August 22, 13

https://plus.google.com/104404461680012191607/posts/Uw87yxQFCfY
https://plus.google.com/104404461680012191607/posts/Uw87yxQFCfY


Advice for Web Developers - 3
§Watch out for contention within the same resource type
- SPDY & HTTP/2 doesn’t fix it...yet? TBD

§<script src=”core.js”></script>
<script src=”enhance.js”></script>
<script src=”enhance_more.js”></script>
<script src=”enhance_even_more.js”></script>
- Ideally, these should be downloaded in parse order, but 

currently even with SPDY & HTTP/2 they’ll contend

Thursday, August 22, 13



Future Work
§Analyze why the preconnect experiment showed no gains
- We hold back lower priority requests at some points, but 

speculatively preconnecting *should* help hide latency
§Experiment with dynamically adjusting the image download 

concurrency limit
§Experiment with trying to leverage more information
- Does the browser know RTT or available bandwidth? Tweak 

limits accordingly.

Thursday, August 22, 13


