
WebRTC
郑又中 Yuchung Cheng
Google
ycheng@google.com

Speed up TCP to make the Web
faster

http://googlecode.blogspot.com/2012/01/lets-make-tcp-faster.html

http://googlecode.blogspot.com/2012/01/lets-make-tcp-faster.html
http://googlecode.blogspot.com/2012/01/lets-make-tcp-faster.html

How Fast Are Websites Around The World? - Google Analytics Blog (April, 2012)

Desktop
Median: ~2.7s
Mean: ~6.9s

Mobile *
Median: ~4.8s
Mean: ~10.2s

* optimistic

http://analytics.blogspot.com/2012/04/global-site-speed-overview-how-fast-are.html
http://analytics.blogspot.com/2012/04/global-site-speed-overview-how-fast-are.html

HTTP Archive - Trends (Sept, 2012)

Content Type Avg # of Requests Avg size
HTML 8 44 kB

Images 53 635 kB

Javascript 14 189 kB

CSS 5 35 kB

http://httparchive.org/trends.php#bytesTotal&reqTotal
http://httparchive.org/trends.php#bytesTotal&reqTotal

1. Reliable and serialized delivery (RFC 793, 1981 -)
a. Export a reliable data pipe to apps
b. Retransmit if packet is not acked

2. Congestion control (RFC 5681, 1988 -)
a. Adjust sending rate based on ACK rate (ack-clocking)
b. Slide congestion window to send more data

3. Optimized for bulk transfer (large file)

Transport Control Protocol (TCP)

TCP is slow for the Web

Emulating a Chrome user in Hong Kong with 1.5Mbps DSL accesing sohu.com with a warmed browser cache (http:
//webpagetest.org)

Handshake

Existing TCP workarounds
Why it won't work in the long run

● Open & keep many TCP connections
○ Don't reduce cwnd after idle

● Problems
○ Still slow - TCP handshake for first contact and slow start after idle
○ Don't scale - need to manage many connections

■ Client, server, network
○ Port exhaustion - NAT boxes silently drop connections
○ Energy inefficient - TCP/FIN wakes up radios

● Persistent TCP connection is not a long term solution

Persistent TCP connections

Let's make TCP fast
Fast startup, loss recovery, and congestion control for mobile

TCP handshake

35% HTTP and 11% SPDY requests wait
for handshake
● 1 RTT overhead
● HTTP-GET in SYN

Challenges
● Resource exhaustion attack

● Amplification attack

SYNACK

Client Server

SYN

HTTP GET

connect

sendmsg

accept

Resource exhaustion & amplified reflection attacks

Attacker

Victim

Server

SYN:
src=victim
HTTP-GET

1 (spoofed) SYN packet for 10 data packets

TCP Fast Open
Server grants a nonce, Fast
Open cookie (FOC)
● AES_encrypt(client_ip, secret)
● TCP option (32 - 64bits)

Client sends HTTP-GET in SYN
with cookie

Server accepts HTTP-GET in SYN
if cookie is valid

Defend simple SYN-data flood
attacks

SYN,cookie (HTTP-GET)

SYNACK,cookie

Client Server

SYN

SYNACK

Stores
cookie

[...] continues as regular TCP

Generates
cookie

Defending attacks

An attacker can still
● Obtain valid cookie via a mole
● Flood spoofed SYN-data from another bot
Defense
● Periodically rotate server secret
● Disable and use SYN cookie if pressured
Other scenarios
● NAT
● Man-in-the-middle
● Firewalls drop SYN/data or strip cookie option

Graceful fallback

Server can always only acks the initial
(SYN) sequence (e.g., SYN flood attack)

Client retries the data after handshake like
regular TCP

No performance penalty!

SYN,cookie(HTTP-GET)

Client Server

SYNACK ack:SYN

invalid
cookie!

HTTP-GET

HTTP 200 OK

Page load time benchmarks

"TCP Fast Open", SIGCOMM CoNEXT 2011 (best paper nominee)

Using Fast Open for your applications

Client:
● connect() then write()
● sendto(data, MSG_FASTOPEN)

Server:
● setsockopt(TCP_FASTOPEN)

Available in Linux 3.7 & being deployed on Google.com

TCP slow start

● TCP is designed to probe the network to figure out the available capacity
● TCP Slow Start - feature, not a bug

Exponential
growth

Packet Loss

HTTP Archive says...
● 1098kb, 82 requests, ~30 hosts... ~14kb per request!
● Most HTTP traffic is composed of small, bursty, TCP flows

You are here

1-3 RTT's

Where we
want to be

Update CWND from 3 to 10 segments, or ~14960 bytes
Default size on Linux 2.6.33+ - double check yours!

Google servers use it since 2010

An Argument for Increasing TCP's initial Congestion window

https://developers.google.com/speed/articles/tcp_initcwnd_paper.pdf
https://developers.google.com/speed/articles/tcp_initcwnd_paper.pdf

HTTP/TCP are 5 - 10 times slower on lossy networks

TCP recover losses in two ways
● Fast recovery (1 RTT): need dupacks
● Timeout (often 5-10 RTTs)

Most losses in HTTP are tail drops (lost last N packets)
● No dupack to trigger fast recovery
● 70% losses on Google.com are recovered by timeout
● Timeout is long on short flows due to few RTT samples

Solution: Tail Loss Probe (TLP)
● Retransmit the last packet to trigger fast recovery

Why is TCP slow on packet losses

Tail Loss Probe

Tail Loss Probe performance

● 6% avg. reduction in HTTP response latency. 10% for 99%ile

Mobile only

But TCP performance on mobile is
terrible
We have some ideas ...

Mobile networks are very different

Desktop Mobile

Loss (TCP) Low Low (wireless codec /
rexmit)

Delay variation Low (queuing) High (wireless)

Rate change Stable (cross traffic) Fluctuates (wireless)

Cross traffic Same and other users Same user

Disconnection Frequent Almost never

TCP congestion control is not working on mobile

Current TCP congestion control

● Sender-based

● Slowly probe and react to network
rate changes (until loss or delay is
too large)

● Per-flow fairness

New mobile congestion control

Key feature: client-centric

● Measures the mobile link rate

● Instruments the rate to the sender

● Prioritizes important connections

Version 0.01: SPDY-cwnd-persist frame

● server: SPDY-GO_AWAY (cwnd is 25)

● client: SPDY-SYN (cwnd was 25)

Congestion
Manager

F1

Mobile
client

Incoming
Data

F2 Fn

Query/
Reply

Outgoing
ACKs

TCP is critical for Web performance but it's not optimized for Web

1. Fast Open - client sends HTTP-GET when connect
a. Linux 3.7

2. IW10 - server sends 10 packets initially
a. Linux 2.6.33+

3. Tail Loss Probe - recover losses within 2-3 RTTs
a. Open source in Q1/2013

4. Congestion control for mobile
a. Under active research. Will open source in 2013

Google "ietf tcpm google" for our RFC proposals in IETF

Conclusions

