
Building fast, scalable game server in
node.js

⺴⽹网易杭州研究院
谢骋超
@圈圈套圈圈
@xiecc

Introduction to pomelo

 https://github.com/NetEase/pomelo

  Fast, scalable, distributed game server framework in
node.js

 Open sourced in

 2012.11.20 �

Github trending Repos---2nd day

Github---most popular

Scope of application

  Game

 Web, socail, mobile game
 Medium size client side game

  Realtime web
 More scalable than other frameworks

What is this lecture about
How to create game using pomelo?

 No

  Scalable game server architecture
  Extensible framework
  Performance

�

Category
 Scalabable game server architecture
 Extensible game server framework
 Performance
�

Scalability---Web and Game server
  Web server
 unlimited scalability

  Game server

World of tanks(bigworld)：74,536 online users
MMORPG：7k-8k maximum

�

Why does game server not scale?
  Long connection VS request/response

 Game server and realtime web

  Long connection: pull/push

 Response time

 Web response time： 2000ms
 Game、realtime web： 100ms

How to solve
  Node.js to rescue

Perfect for:
Fast scalable network applications
Real-time application

 Erlang and node.js

Why does game server not scale
  Web app（not realtime），no realtime interact

 No coordinates, no adjacency
  Partition randomly, stateless

  Game server, realtime interact
 Have coordinate, no adjacency
  Partition by area, stateful �

How to solve
  Paritition by area

 One area in one process （or many areas in one process）
 The scalability of server is limited by process�

area � area2�area1�

Process1� Process2�

Why does game server not scale

MESSAGES IN �

1 �
MESSAGES OUT�

1 �

Broadcast�

1 1

Why does game server not scale

MESSAGES IN �

2 �
MESSAGES OUT�

4 �

1 2

12

Why does game server not scale
MESSAGES IN �

4 �
MESSAGES OUT�

16 �
1 4

14

11

4 4

Why does game server not scale
MESSAGES IN �

100 �
MESSAGES OUT�

10000�
1 100 �

1100 �

11

100 � 100 �

Why does game server not scale
MESSAGES IN �

1000 �
MESSAGES OUT�

1000000�
1 1000 �

11000 �

11

1000 � 1000 �

How to solve --- broadcast
  AOI --- area of interested module: pomelo-aoi

How to solve
  Split process, seperate load , frontend is stateless�

frontend�

backend �

Single Process �

broadcast �

Game logic �

Why does game server not scale
 Tick

  setInterval(tick, 100)

  What does every tick do?
 Update every entity in the scene(disappear，move, revive)
 Refresh mob
 Driving ai logic(monster, player)

Tick must be far less than 100ms

Problem of tick
  The entity number should be limited

  Pay attention to update algorithm: AI etc.

  GC, full gc should never happen
 V8 is good at GC when memory is under 500M
 Memory must be limited
 Try to divide process

  Multi-thread may have some logic problem
  node.js is single thread

At last--- runtime architecture

Runtime architecture--lordofpomelo

Problem of runtime architecture?
  How many codes for this complicated architecture?
  A lot of servers and server types, how to manage?
  The server side rpc is complicated, how to simplify?
  A lot of processes

 How many servers do we need？
 How to spot the problem on multiple servers？
  Is it too heavy, not efficient?

With pomelo
  Achieve this architecture---almost zero Code
  Server types and servers extention --- simple
  Servers invocation --- Simple，zero config, no stub
  A lot of processes

 One machine, small amount of resources
  Single console，quick spot problem, no different to single

process
  Lightweight, extremely quick to start up

Scalability and node.js

Node.js shine

  A lot of network I/O, broadcast

  Multi-process, single thread

  Lightweight

Category
  Scalability of Game server
  Extensible game server framework
  Performance�

Framework --- Extensibility
  Difference between framework and project

  Base architecture over function
  Extensible：config(DSL)，extention points
  Everything is replacable： underlying protocal, router,

application component, service, admin console
 Modularize---reusable module

  Pomelo specific---servers management

Category --- extensibility
  Server abstraction
  App abstraction
  App extention point
  Modularize�

Abstract of Servers
  Pomelo --- distributed(multi-process) app architecture

 why?

  State

 Web app---stateless，nginx or apache handle processes

  App servers interaction
 Web app has not interaction

  Before node.js, too heavy for multiple processes

Abstract of servers

frontend�

frontend�

backend�

backend�

backend�

backend�

forward message�

rpc�

master�

Abstract of servers
  Duck type�

frontend�

conn
ector�

backend�

area �

chat �

status �

Abstract of servers

servers�

The
Duck�

Abstract of servers
  Easy to extend�

Convention over configuration
 rpc --- based on server abstract

�

Abstract of Application
  We need an expressive DSL

  Flexible
  Support multi-servers config
  Support a lot of extention points

Json and XML does not fit our needs.

Application DSL

Application DSL --- configure
Multiple server config:

app.configure(‘production|development’, function() {
});

app.configure(‘production|development’, ‘chat’, function() {
});

app.configure(‘production’, ‘connector|area|auth’, function(){
});

�

Filter
app.filter(pomelo.filters.timout());�

Filter

Router
  Route to specific server
 based on session state, dynamic

  app.route(‘chat’, routeUtil.chat);

Extensibility– request and
transparent route
  Request and transparent route�

Extensibility --- Component

app.load(component, options};

app.configure(‘production’, ‘area’, function() {

 app.load(pomelo.sync, {
 path:__dirname,
 dbclient:dbclient’
 });

});

Extensibility--- App component

app

handler

rpc
proxy

rpc
server

connect
or client

remote
peer

client

client

Pomelo is a collection of components �

Component

Modularize---npm module based design
  James Halliday(substack) --- linux philosophy �

Modularize---npm module based design

Pomelo�

pomelo-
sync�

pomelo-
loader �

pomelo-
rpc�

pomelo-
protocol�

pomelo-
monitor �

pomelo-
logger �

pomelo-
aoi�

pomelo-
pathfinding �

pomelo-bt �

pomelo-
admin-web�

pomelo-
admin�

Admin console

pomelo � pomelo
-admin�

pomelo-
admin-web�

Pomelo�

Monitor
logic �

Master,
servers�

Monitor
log�

Rpc, request � Admin console�

 Client js �

Admin console extensibility

Extensibility ---Node.js shine again

  Strong DSL ability

  Dynamic，easy for COC

  Module organization，npm， all components are loosely
coupled�

Category
  Scalabable game server architecture
  Extensible game server framework
  Performance�

Performance --- overview
  The indicator

 The max online users
 Response time/throughput
  Single area or game?

  The variation
 Game logic: round or realtime, room or infinite
 Map size, character density
  Balance of areas
 Test parameters: Think time, test action

Performance --- target
  Area online users

  next-gen:
  Socket.io: 25,000 concurrent users

  But in the real world
  The real online data: maximum 1,000 concurrent users per area,

8,000 concurrent users per group game servers

Performance --- tools
Stress testing for websocket--pomelo-robot

master�

agent � agent �

robot � robot � robot � robot � robot �

Performance --- tools
Stress test console�

Performance --- tools, profiler
Server profiler, choosing servers�

Performance --- stress testing

 Stress on single area, increasing step by step

 Real game logic simulation
 Roam, fight, pick
 Think time: 2s~4s

Performance --- hardware
  CPU , 24 cores

  Mem, 48G�

Performance --- progress
  6 rounds
  Online users: 200 to 1000…
  Response time: less than 200ms

  Enter scene: 200ms
 Other requests: 100ms

Performance --- broadcast
200 online users, connector 100% cpu�

Area �connectors �clients �

channel�

uids �

connector1 �

connector2 �

client1 �

client2 �

clientn�

…�

regroup�

uids1 �

uids2 �

…� …�

broadcast �

tick: 20ms �

Performance --- channel, where is wrong?

tick:20ms�

serialize �deserialize �

serialize �

serialize �

serialize �

deserialize �

Performance --- connector
  Connector--- the middle man
What do I need data for?

�

connector1 �

connector2 �

…�

Message in�

forward�

Parse the route �
area �

{route:’area.play
erHandler.hello’,
data:{…}}

area �

forward�

broadcast �

Client�

encode�

Decode: only route �

Stringify �
parse �

Serialize
deserialize �

Performance --- the package
  Pomelo-protocal

 Only parse head for route information：

�

\0\0\0\3\34connector.loginHandler.lo
gin{“username”:”xcc”,……..}
�

Performance---CPU
 场景及出生点
 寻路问题
 怪数量及动态寻路
 AOI计算
 大量的解压包
 dataApi查找换成MAP

Performance---IO
 网络传送数据路过大
 数据未批量发送
 用户断开空转
 数据同步日志过于频繁

Performance---Memory
 数据抽取模式（拉推）
 冗余数据去除
 内存泄漏及GC

Performance --- the result
  1600 onlines �

Performance --- the result
  1600 onlines , server load
Isn’t that amazing? � no�

Performance --- the result
  800 onlines, fight each other �

Performance --- the result
  Server load, fight each other �

TODO
  Performance

  Servers rpc， sock.io  tcp
 Network protocal, json is wasteful

  Fault-tolerant
  Different clients support

Sites
  Pomelo home： http://pomelo.netease.com
  Github: https://github.com/NetEase/pomelo
  Demo: http://pomelo.netease.com/lordofpomelo
  Weibo： @pomelonode @圈圈套圈圈�

Q&A

