
Performance Case Study

@Fabian_Frank
<fabian@pagefault.de>

Yahoo! Search, Engineer
Youthmedia.eu, Volunteer

mailto:fabian@pagefault.de
mailto:fabian@pagefault.de

A Dynamic Website

self-contained App

self-contained App

self-contained App

node v0.4.X
multi-core

http://developer.yahoo.com/blogs/ydn/posts/2010/07/multicore_http_server_with_nodejs/

http://developer.yahoo.com/blogs/ydn/posts/2010/07/multicore_http_server_with_nodejs/
http://developer.yahoo.com/blogs/ydn/posts/2010/07/multicore_http_server_with_nodejs/

Time Sharing

• Workers

• Event Queue

Event Queue

• does only one thing at a time

• events that occur are queued for
processing

• after an event was processed the next one
is fetched from the queue

The difference

Workers

1. synchronous call

2. worker blocked

3. periodically check if
worker can go ahead

4. call returns

5. worker goes ahead on
next check

Event Queue

1. asynchronous call that
specifies event(s) that can
occur (callback)

2. process next event

3. specified event occurs and
is put on the queue

4. process goes ahead

Another difference

Workers

• 1 connection per
worker

• N workers per CPU

Event Queue

• N connections per
process

• 1 process (per CPU)

Regarding...

• static file serving benchmarks

• are not relevant, unless you plan to do
heavy duty static file serving (I’m not)

• hello world benchmarks

• still ignore most of what matters, e.g.
accessing a database or other back-ends

Realistic
Real World Benchmark

• a lot of variables that have to be controlled

• more complex, likely to surface weird bugs

• face unanswerable questions

• are expensive to do

• are easy to attack, but hard to defend

My Reasoning

• “I can not compare everything out there
against everything else. But I can compare
what I want to use in the future against what
I am using today.”

Search Case Study

• Right Panel retrieved using AJAX

• { ‘html’: ‘<div>...</div>’, ‘css’: ‘...’, ‘js:’ ‘...’, ... }

Refresh Right Panel

1. receive a request

2. call a JSON API over HTTP

3. manipulate the data structure

4. render it as HTML using Mustache

5. write back wrapped in JSON Client

Node.js

JSON API

Proxy
2.

1.

3.
4.

5.

Constraints

• Network bandwidth and latency

• Gigabit and 1ms

• JSON API performance

• load-balanced cluster with cache

Implementations

• Apache + PHP

• Node.js (+ YUI)

• Manhattan + Mojito

Apache + PHP

• works, in production for decades

• initial response times are “good enough”

• scales, but you need $$$

• baseline to get a feeling for the numbers

Apache + PHP

• 430req/s @ 60ms average latency

• 99% @ 114ms

Node.js (+ YUI)

• works, but very new and untested stack

• initial response times are very low

• scales extremely well

• YUI works well, but still has pitfalls

Node.js Fun Facts

• >3100 requests per second

• 100k requests in 32s

• 9MByte/s network traffic

• serve >2k req/s at 20ms average latency

• 99% @ 47ms

Node.js

Node.js

Node.js Histogram
~1500req/s | 25 conc.

0

2000

4000

6000

8000

10000

12000

11.000 -
17.300

17.300 -
23.600

23.600 -
29.900

29.900 -
36.200

36.200 -
42.500

42.500 -
48.800

48.800 -
55.100

55.100 -
61.400

61.400 -
67.700

67.700 -
74.000

74.000 -
80.300

fr
eq

ue
nc

y

99% @ 35ms

Node.js Histogram
~2900/s | 100 conc.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

12.000 -
22.000

22.000 -
32.000

32.000 -
42.000

42.000 -
52.000

52.000 -
62.000

62.000 -
72.000

72.000 -
82.000

82.000 -
92.000

92.000 -
102.000

102.000 -
112.000

112.000 -
122.000

fr
eq

ue
nc

y

99% @ 79ms

Node.js Histogram
~3100/s | 200 conc.

0

1000

2000

3000

4000

5000

6000

7000

8000

14.000 -
33.900

33.900 -
53.800

53.800 -
73.700

73.700 -
93.600

93.600 -
113.500

113.500 -
133.400

133.400 -
153.300

153.300 -
173.200

173.200 -
193.100

193.100 -
213.000

213.000 -
232.900

fr
eq

ue
nc

y

99% @ 152ms

Manhattan + Mojito

• works, but extremely new and untested
stack

• initial response times are low (60%
compared to Apache/PHP)

• scales well (twice as good as Apache/PHP)

Manhattan + Mojito

Manhattan + Mojito

Findings

• Both node.js implementations scale linearly
before CPU usage hits 100%

• Node.js scales extremely well as proxy

• Manhattan and Mojito can perform better
than Apache and PHP (for this use case)

• Node.js applications are very sensitive to
memory leaks or complex/blocking code

DNS in Node.js

• getaddrinfo() sys call is synchronous

• gethostbyname() is, too

• ares_gethostbyname() is asynchronous

• no cache

• node 0.6 uses a getaddrinfo() thread pool,
but still relies on ares for other calls

Cocktails

• Manhattan

• Mojito

Manhattan?

• Yahoo!’s Node.js cloud

• can run any node.js application

• allows calls to HTTP APIs (e.g. YQL)

• deployment of versioned apps

• apps can specify their environment

http://developer.yahoo.com/blogs/ydn/posts/2011/11/yahoo-announces-cocktails-%E2%80%93-shaken-not-stirred/

http://developer.yahoo.com/blogs/ydn/posts/2011/11/yahoo-announces-cocktails-%E2%80%93-shaken-not-stirred/
http://developer.yahoo.com/blogs/ydn/posts/2011/11/yahoo-announces-cocktails-%E2%80%93-shaken-not-stirred/

Mojito?

• Yahoo!‘s Node.js MVC framework

• provides identical similar runtime for your
code on the client and server

• contains all server- and client-side code

• built on top of YUI

• will be open sourced

http://developer.yahoo.com/blogs/ydn/posts/2011/11/yahoo-announces-cocktails-%E2%80%93-shaken-not-stirred/

http://developer.yahoo.com/blogs/ydn/posts/2011/11/yahoo-announces-cocktails-%E2%80%93-shaken-not-stirred/
http://developer.yahoo.com/blogs/ydn/posts/2011/11/yahoo-announces-cocktails-%E2%80%93-shaken-not-stirred/

The Cocktails way
Mojito Application

Model

View

Controller

Mojit

Client JS

CSS

Assets

Images

...

Conclusion

• Node.js can serve hundreds of concurrent
requests quickly and reliable, “better” than
Apache/PHP

• It scales extremely well for I/O bound use
cases

• It tears down the client-server language
barrier, opening new architectural
possibilities

Thank you!

Picture: "Esther Müller" / www.jugendfotos.de, CC-License(by-nc)

http://www.jugendfotos.de
http://www.jugendfotos.de

