
Using JavaScript Well

Douglas Crockford
Yahoo!

The World’s Most
Misunderstood Programming

Language

The World’s Most Popular
Programming Language

The World’s Most Popular
Programming Language

The World’s Most Unpopular

Programming Language

JavaScript was a failed
language.

It should have died when
Netscape died.

The language survived
because of the Ajax
Revolution [2005].

It is flourishing now because the
language works.

JavaScript runs everywhere

•  Web

•  Mobile

•  Embedded

•  OS

•  TV sets

•  Databases (CouchDB, MongoDB)

•  Servers

JavaScript Performance

•  The initial implementations were very
slow.

•  Modern JavaScript engines are much
faster.

•  We don’t know how much faster because
the benchmarks are bogus, and all
implementers are gaming the benchmarks.

•  Most applications are limited by DOM, not
JavaScript.

Broadest range of skills

•  Computer scientists.

•  Cut-and-pasters.

•  Everybody in between.

•  Making a language that works for people
at either extreme is difficult.

•  Making a language that works for people
at both extremes is amazing.

Bad Parts

•  All languages contain some bad parts.

•  JavaScript contains lots and lots of bad
parts.

•  JavaScript was designed and delivered to
the world much too quickly.

•  The problem with bad parts isn’t that they
are useless. Bad parts are dangerous.

•  Most of the bad parts can be avoided.

Good Parts

•  By choosing to use only the good parts,
you can use the excellent language that is
hidden inside of the least popular
language.

•  JavaScript contains some of the best parts
ever put into a programming language.

The language has so much
expressive power that you can
get a lot of work done without

learning the language first.

Never program in ignorance.

By mastering the good parts,
you can use the language

well.
And now, the Good Parts.

Numbers

•  A single binary floating point number type:
IEEE 754
   Numbers are values virtually composed of

thousands of bits.

   Only the 53 most significant bits are retained.

   These numbers are finite. But real numbers
are not. So most rational numbers, and all
irrational numbers, can only be approximated.

Associative law does not hold

•  (a + b) + c is not guaranteed to always be
the same as a + (b + c).

•  Approximate values contain a small
amount of noise.

•  The amount of noise can accumulate over
many calculations.

•  The order of evaluation can have an
impact on the amount of noise
accumulated.

Integers are exact

•  Integers have no noise and associate
correctly as long as all values are less
than 9007199254740992.

•  Larger integers can be noisy.

•  Most other languages contain int types in
which this can be true:
  a > 0, b > 0
  (a + b) < 0 // insane

Decimal fractions are very noisy

•  The most reported bug:
  0.1 + 0.2 === 0.3 // false

•  Binary floating point cannot exactly
represent decimal fractions.

•  This is only a problem on planets that use
the decimal system

•  Be very careful when adding people’s
money.

Strings

•  Unicode (UCS-2)

•  Literals
  "text"

  'symbol'
  'cat' === 'c' + 'a' + 't' // true

Booleans

• true

• false

Boolish values
•  falsy

  false
  0
  NaN
  "" // empty string
  null
  undefined

•  truthy
   All other values including empty objects and

empty arrays.

Objects
•  Simple associative containers

(hashtable, dictionary).
•  Store and retrieve suffixes:

   object[expression]
   object.name

•  Reflection is free
   Retrieving from a missing key produces the
undefined value.

•  Object.keys(object)
   produces an array containing all of the enumerable

keys.

Object Literal
flight = {
 airline: "Oceanic",
 number: 815,
 departure: {
 IATA: "SYD",
 time: "2004-09-22 14:55",
 city: "Sydney"
 },
 arrival: {
 IATA: "LAX",
 time: "2004-09-23 10:42",
 city: "Los Angeles"
 }
};

Array

•  Arrays are just objects with additional
methods and a special property:
  .length
   The number of the largest positive element,

plus one.

Array

var veggies = [

 "oats", "peas", "beans"

];

alert(veggies.length); // 3

veggies[veggies.length] =
"barley";

alert(veggies.length); // 4

Everything is an object

Except null and undefined

Prototype

• Object.create(object)
   Create a new empty object that uses object as

its prototype.

•  Delegation
   If retrieve of a key fails, retrieve the key from

the prototype.

•  Differential Inheritance
   Objects inherit from other objects. Class-free.

Prototypal Inheritance

•  More powerful than Classical Inheritance.

•  Classification is not necessary.
   With classical inheritance, it is necessary to

create a taxonomy of the object system at the
beginning, usually before the system is well
understood.

•  Prototypal systems tend to be simpler,
shallower, less ancestral coupling.

Function

•  The best part.
Like Scheme’s lambda.

•  Functions are first class objects.

•  name

•  (parameters)

•  {body}

Statements
•  Conditional

   if
   switch

•  Loops
   while
   do
   for

•  Disruption
   break
   return
   try/throw

•  expression
   assignment or function invocation

Operators
•  Arithmetic

   + - * / %

•  Comparison
   === !== < > <= >=

•  Logical
   && || !

•  Bitwise
   & | ^ >> >>> <<

   Ternary
   ?:

typeof

•  The typeof prefix operator returns a
string identifying the type of a value.

type typeof

object 'object'

function 'function'

array 'object'

number 'number'

string 'string'

boolean 'boolean'

null 'object'

undefined 'undefined'

Array.isArray

Array.isArray(value) returns true if
the value is an array.

var statement
•  Private variables

   Explicitly declare all of the functions variables at the top of
the body.

•  Function scope
   The syntax promises blocks scope, but does not deliver.

•  Free variables
   If a body does not declare a name as a variable or a

parameter, then it can be obtained from an outer function.

•  Closure
   A function can continue to access the variables of an outer

function even after the outer function has returned.

this

•  The this implicit parameter contains a
reference to the object of invocation.

• this allows a method to know what object
it is concerned with.

• this allows a single function object to
service many functions.

Invocation

•  The function() suffix operator
surrounding zero or more comma
separated arguments.

•  The arguments will be bound to
parameters.

Invocation

•  If a function is called with too many
arguments, the extra arguments are
ignored.

•  If a function is called with too few
arguments, the missing values will be
undefined.

•  There is no implicit type checking on the
arguments.

There are four ways to call a
function:

•  Function form
   functionObject(arguments)

•  Method form
   thisObject.methodName(arguments)
   thisObject["methodName"](arguments)

•  Constructor form
  new FunctionObject(arguments)

•  Apply form
   functionObject.apply(thisObject,
[arguments])

Function form

functionObject(arguments)

•  When a function is called in the function
form, this is set to undefined.

Method form
thisObject.methodName(arguments)

thisObject[methodName](arguments)

•  When a function is called in the method
form, this is set to thisObject, the object
containing the function.

•  This allows methods to have a reference
to the object of interest.

Constructor form

new FunctionValue(arguments)

•  When a function is called with the new
operator, a new object is created with
Object.create(
FunctionValue.prototype) and
assigned to this.

•  If there is not an explicit return value, then
this will be returned.

Apply form
functionObject.apply(thisObject, arguments)

 functionObject.call(thisObject, argument…)

•  A function’s apply or call method allows for
calling the function, explicitly specifying
thisObject.

this

•  this is an bonus
parameter. Its value
depends on the
calling form.

•  this gives methods
access to their
objects.

•  this is bound at
invocation time.

Invocation form this

function undefined

method the object

constructor the new object

apply argument

Worst Part: Global Object
•  An application might be composed of several

scripts.
•  Each script is compiled and then executed in

a common global environment.
•  The global object is the container of all global

variables.
•  All global variables are shared.
•  Accidental collisions are inevitable.
•  This is one of the root causes of the XSS

Attack.

Strict Mode

"use strict";

•  Limits access to the global object.

•  Makes it possible to have efficient and
safe mashups.

•  The most important new feature of
ECMAScript Fifth Edition.

•  IE9?

Those are the Good Parts.

Compose with the Good Parts to
make good programs.

JSLint

•  JSLint is a code quaility tool for
JavaScript, written in javaScript.

•  JSLint defines a professional subset of
JavaScript.

•  JSLint understands the difference between
Good Parts and Bad parts.

•  Follow its advice.

• http://www.JSLint.com/

WARNING!
JSLint will hurt your

feelings.

Global

var names = ['zero', 'one', 'two',

 'three', 'four', 'five', 'six',

 'seven', 'eight', 'nine'];

var digit_name = function (n) {

 return names[n];

};

alert(digit_name(3)); // 'three'

Slow
var digit_name = function (n) {

 var names = ['zero', 'one', 'two',

 'three', 'four', 'five', 'six',

 'seven', 'eight', 'nine'];

 return names[n];

};

alert(digit_name(3)); // 'three'

Closure
var digit_name = (function () {

 var names = ['zero', 'one', 'two',

 'three', 'four', 'five', 'six',

 'seven', 'eight', 'nine'];

 return function (n) {

 return names[n];

 };

}());

alert(digit_name(3)); // 'three'

function memoizer(memo, formula) {

 function recur(n) {

 return memo.hasOwnProperty(n) ?

 memo[n] :

 memo[n] = formula(recur, n);

 };

 return recur;

}

var factorial =

 memoizer([1, 1], function (recur, n) {

 return n * recur(n - 1);

});

function memoizer(memo, formula) {

 function recur(n) {

 return memo.hasOwnProperty(n) ?

 memo[n] :

 memo[n] = formula(recur, n);

 };

 return recur;

}

var fibonacci =

 memoizer([0, 1], function (recur, n) {

 return recur(n - 1) + recur(n - 2);

});

function memoizer(memo, formula) {

 function recur(n) {

 return memo.hasOwnProperty(n) ?

 memo[n] :

 memo[n] = formula(recur, n);

 };

 return recur;

}

var digit_name = memoizer(['zero', 'one',

 'two', 'three', 'four', 'five', 'six',

 'seven', 'eight', 'nine']);

A Module Pattern
var singleton = (function () {

 var privateVariable;

 function privateFunction(x) {

 ...privateVariable...

 }

 return {

 firstMethod: function (a, b) {

 ...privateVariable...

 },

 secondMethod: function (c) {

 ...privateFunction()...

 }

 };

}());

Module pattern is easily
transformed into a powerful

constructor pattern.

Power Constructors

1.  Make an object.
•  Object.create
•  Object literal

•  new

•  call another power constructor

Power Constructors

1.  Make an object.
•  Object literal, new, Object.create, call

another power constructor

2.  Define some variables and functions.

•  These become private members.

Power Constructors

1.  Make an object.
•  Object literal, new, Object.create, call

another power constructor

2.  Define some variables and functions.

•  These become private members.

3.  Augment the object with privileged
methods.

Power Constructors

1.  Make an object.
•  Object literal, new, Object.create, call

another power constructor

2.  Define some variables and functions.

•  These become private members.

3.  Augment the object with privileged
methods.

4.  Return the object.

Step One

function myPowerConstructor(x) {
 var that = otherMaker(x);
}

Step Two

function myPowerConstructor(x) {
 var that = otherMaker(x);
 var secret = f(x);
}

Step Three

function myPowerConstructor(x) {
 var that = otherMaker(x);
 var secret = f(x);
 that.priv = function () {
 ... secret x that ...
 };
}

Step Four

function myPowerConstructor(x) {
 var that = otherMaker(x);
 var secret = f(x);
 that.priv = function () {
 ... secret x that ...
 };
 return that;
}

Thinking about performance

•  Avoid premature optimization.

•  Always measure before optimizing.

•  Touch the DOM as lightly as possible.

•  Avoid tuning for any particular browser.

•  JavaScript and the DOM do not do well
with huge data structures. Only ask for the
data you need.

Thinking in functions

•  Use the Good Parts to make objects and
functions.

•  Callbacks. Mixins. Chains. Compositions.

•  There are lots of ways to get wonderful
things to happen.

