
There and Back Again:
Server Side JavaScript

Douglas Crockford
Yahoo!

The Web was intended to be a
document retrieval system.

Early on people felt the need for
something more dynamic.

CGI and Perl scripts.

Templating

•  PHP [1995] demonstrated an easier
model, where script blocks could be
inserted into an HTML file. Each time the
page is requested, the scripts would run,
injecting text into the HTML stream.

•  PHP was highly influential: ASP and JSP.

•  Netscape LiveWire [1996]. Used server
side JavaScript in a PHP-like way.

•  Fortunately, it failed.

It was fortunate that it failed
because there are problems

with the HTML template
approach.

•  Security: It is too easy to inject dangerous text into
the HTML stream, enabling XSS Attacks. It is
possible to inject text correctly, but it is hard.

•  Performance: Scripts are run serially and are
blocking. If the page contains many independent
components, unnecessary delays are imposed. It
is possible to do things in parallel, but it is hard.

•  No one wants to do hard in PHP. That’s not what
it’s for.

PHP made a lot of sense 15
years ago.

A lot has changed in 15 years.

JavaScript is very successful
in the browser with an event-
driven, non-blocking model.

Can we bring that success back to
the server?

Obvious Advantages

•  Web developers only been to be current in
one language.

•  Using Ajax techniques to build HTML
components is much safer than templating
because structures are guaranteed to be
encoded correctly.

•  Complex pages can be built up
concurrently instead of serially.

Obvious Disadvantage

•  Outside of web development, the
completely event-driven model is still
unfamiliar.

•  Historically, programming languages going
back to FORTRAN relied on blocking I/O.

•  In the 1970s, researchers and game
developers were experimenting with event
driven systems.

1984

You have to write the
programs inside out! Waa!

Let’s go back to the command
line.

Non-programmers were
incredibly productive with

HyperCard.
Suddenly, professional

programmers got smarter and
there was an explosion of Mac

and Windows applications.

HyperCard was all about events

•  Programs (aka stacks) were written as a
collection of event handlers attached to
visible objects.

•  Events bubble up.
on mouseUp

on keyDown

on cardEnter

on idle

HyperCard had a big impact
on the evolution of the

browser.

JavaScript is well suited for this model.
As awful as the DOM is,

JavaScript+DOM is effective.
JavaScript+YUI3 is really effective.

JavaScript does not have
READ.

That has always been seen as a
huge disadvantage, but it is
actually a wonderful thing.

READ is blocking, and blocking
is bad for event loops.
JavaScript programmers are

smarter about using event loops
than programmers of other

languages.

Event loop is just one
approach to concurrency.

The most popular approach is
threading:

Two or more real or virtually CPUs
sharing the same memory.

Threading

Pro
•  No rethinking is

necessary.

•  Threading is compatible
with blocking I/O.

•  Execution continues as
long as any thread is not
blocked.

Con
•  Stack memory per thread.

•  If two threads use the
same memory, a race
may occur.

•  To be continued…

Two threads

1.  my_array[my_array.length] = 'a';
2.  my_array[my_array.length] = 'b';

•  ['a', 'b']
•  ['b', 'a']

Two threads

1.  my_array[my_array.length] = 'a';
2.  my_array[my_array.length] = 'b';

•  ['a', 'b']
•  ['b', 'a']
•  ['a']

•  ['b']

my_array[my_array.length] = 'a';

length_a = my_array.length;

my_array[length_a] = 'a';

if (length_a >= my_array.length) {

 my_array.length = length_a + 1;

}

my_array[my_array.length] = 'a';

length_a = my_array.length;

length_b = my_array.length;

my_array[length_a] = 'a';

if (length_a >= my_array.length) {

my_array[length_b] = 'b';

 my_array.length = length_a + 1;

}

if (length_b >= my_array.length) {

 my_array.length = length_b + 1;

}

It is impossible to have
application integrity when
subject to race conditions.

Mutual Exclusion

•  semaphore

•  monitor

•  rendezvous
•  synchronization

•  This used to be operating system stuff.

•  It has leaked into applications because of
networking and the multi-core problem.

Mutual Exclusion
•  Only one thread can be executing on a

critical section at a time.
•  All other threads wanting to execute the

critical section are blocked.

•  If threads don’t interact, then the program
runs at full speed.

•  If they do interact, then races will occur
unless mutual exclusion is employed.

•  Mutual exclusion can cause threads to block.

Deadlock

Deadlock

Deadlock
•  Deadlock occurs when threads are waiting on

each other.

•  Races and deadlocks are difficult to reason
about.

•  They are the most difficult problems to
identify, debug and correct.

•  They are often unobservable during testing.

•  Managing sequential logic is hard. Managing
temporal logic is really, really hard.

Threading

Pro
•  No rethinking is

necessary.

•  Blocking programs are
ok.

Con
•  Stack memory per thread.

•  If two threads use the
same memory, a race
may occur.

•  Overhead.

•  Deadlock.

•  Thinking about reliability
is extremely difficult.

•  System/Application
confusion.

Fortunately, there is a model
that completely avoids all of

the reliability hazards of
threads.

The Event Loop!

Event Loop

Pro
•  Completely free of races

and deadlocks.

•  Only one stack.

•  Very low overhead.

•  Resilient. If a turn fails,
the program can still go
on.

Con
•  Programs must never

block.

•  Programs are inside out!
Waa!

•  Turns must finish quickly.

Long running tasks

•  Two solutions for long running programs:

•  Eteration: Break the task into multiple
turns.

•  Move the task into a separate process
(workers).

Remote Procedure Call
•  Combines two great ideas, functions and

networking, producing a really bad idea.
•  Like READ, attempts to isolate programs from

time. The program blacks out.
•  In reading the program, it is by design difficult

to see where time is lost.
•  This can result in a terrible experience for the

user. Lost time === annoying delays.
•  Keeping the user waiting without warning is

disrespectful and rude.

Latency Compensation

•  At a minimum, acknowledge user’s input
immediately.

•  Don’t lock up the interaction while waiting
for the server’s response.

•  In some applications, it is reasonable to
predict the server’s response and display it
immediately. Later display a correction if
the prediction was wrong.

Security

XS
S

XSS has two causes:

1. Sharing of the global object.

2. Misinterpretation of HTML...

What can an attacker do if he
gets some script into your

page?

An attacker can request
additional scripts from any server

in the world.
Once it gets a foothold, it can

obtain all of the scripts it needs.

An attacker can read the
document.

The attacker can see everything
the user sees.

An attacker can make
requests of your server.

Your server cannot detect that the
request did not originate with your

application.

If your server accepts SQL
queries, then the attacker gets

access to your database.

SQL was optimized for
SQL Injection Attacks

An attacker has control over the
display and can request

information from the user.

The user cannot detect that the
request did not originate with your

application.

An attacker can send information
to servers anywhere in the world.

The consequences of a
successful attack are horrible.

Harm to customers.
Loss of trust.

Legal liabilities.

The browser does not prevent
any of these terrible things.

Web standards require these
weaknesses.

15 Years
of XSS

Tragically, HTML5 ignores
and worsens the XSS

problem.

The browser is a loaded gun
pointed at your head.

This pulls the trigger:

<?= "bang" ?>

Page Templates

•  The page template systems (PHP, ASP,
JSP…) are not a good match for the way
we build modern sites.

•  A template is too rigid a framework.

•  It is too easy to insert text into a context
where it can be misinterpreted and
executed, completing an XSS attack.

Can we do better by using
JavaScript on the server?

 There are some obvious

advantages:

We can take advantage of our new
understanding of JavaScript.

What about Server Side
JavaScript with an Event

Loop?

node.js
•  node.js implements a web server in a

JavaScript event loop.

•  It is a high-performance event pump.

fs.read(fd, length, position, encoding,
function (err, str, bytesRead) {...})

•  Everything is (or can be) non-blocking.

•  Except:
   some synchronous functions
  require

Your stuff runs on both sides

JS/V8 Browser

DOM
JS

DOM node.js

YUI3

Your stuff Your stuff

YUI3

Exceptions

•  Exceptions do not work in an event
system, because exceptions only work in
the current turn. An exception cannot be
caught by a previous turn.

•  So APIs need to have callbacks in pairs:
One callback for the successful case, and
one callback for the exceptional case.

Deeply nest callback
functions.

Research into better patterns and
library support.

Requestor
myRequestor = function (sync) {

 service_request(arguments,

 function (result) {

 sync(result, error);

 });

};

parallel([requestors…], sync, timeout);

serial([requestors…], sync, timeout);

