Static resource
management & optimization

Xiaoliang “David” Wei
Facebook Inc.
www.facebook.com/DavidWei
DavidWei@acm.org

Velocity China, Dec 7t", 2010, Beijing

SR management & optimization

A major role in Web Performance

- 12 out of 14 rules in “High Performance
Websites”

- Few HTTP requests

- Use Content Distribution Network

- Half of the rules in “Even Faster Web Sites”

- Splitting Initial Payload iﬁ

. . . ; 0 Even Faster
Loading scripts without blockings ek Sare

1 Thechallenges & the dreams
2 Interface and architecture

3 Scalability

4 Adaptability

Challenges & Dreams

Facebook: the largest social network

- 100+ languages translated by grass-root users

- 10000+ browser varieties and changing (~8 browsers >1% market
shares)

- IPs from Large spectrum of latency and connectivity

- Different usage patterns (40K+ patterns of usages in major full
page end point)

Facebook: the largest social network

- 100+ languages translated by grass-root users

- 10000+ browser varieties and changing (~8 browsers >1% market
shares)

- IPs from Large spectrum of latency and connectivity

- Different usage patterns (40K+ patterns of usages in major full
page end point)

- Summary: a large scale web site with high user variety

Performance optimization: Challenge

“Best Practices for Speeding Up You Web Site” - YSlow
Rule 1: Minimize HTTP Request
- Concatenating files: Javscript and Stylesheets packaging

- Images spriting

Performance optimization: Challenge

<Print CSS tag for feature A>
<Print CSS tag for feature B>
<Print CSS tag for feature C>
<print HTML of feature A>
<print HTML of feature B>

<print HTML of feature C>

“Let’s write a
new page with
features A, B
and C!”

Performance optimization: Challenge

<Print CSS tag for feature A>
<Print CSS tag for feature B>
<Print CSS tag for feature C>
<print HTML of feature A>
<print HTML of feature B>

<print HTML of feature C>

“A&B &Care
always used;
let’s package
them
together!”

Performance optimization: Challenge

<Print CSS tag for feature A&B&C in a single package>
<print HTML of feature A>
<print HTML of feature B>

<print HTML of feature C>

Performance optimization: Challenge

<Print CSS tag for feature A&B&C in a single package>
<print HTML of feature A>

<print HTML of feature B>

If (users_signup_for_C()) § <print HTML of feature C>}

Performance optimization: Challenge

<Print CSS tag for feature A&B&C>
A&B are always

) used, while Cis
<print HTML of feature A> not. ..

<print HTML of feature B>

If (users_signup_for_C()) § <print HTML of feature C>}

Performance optimization: Challenge

<Print CSS tag for feature A&B&C>
<print HTML of feature A>

<print HTML of feature B>

// noone uses C § <print HTML of feature C>}

Performance optimization: Challenge

<Print CSS tag for feature A&B&C>

It is hard to
should remove C
<print HTML of feature B> here.

// noone uses C § <print HTML of feature C>}

Performance optimization: Challenge

<Print CSS tag for feature A&B&C&D&E&F&G...>

Thousands of
if (Fis used) <print HTML of feature F> dead CSS bytes in

the package.
<print HTML of feature G>

if (Fis not used) § <print HTML of feature E>}

The dreams

Fully customized user experience:

- Most suitable delivery mechanisms for each browser
capability

- Best packaging / sprite strategy for a user’s connectivity

- Accurate predictive loading based on usage patterns

Allow product engineers to move fast: 3D
- Simple Development process

- Quick Deployment

- Easy Debugging

The dreams

Fully customized user experience:

- Most suitable delivery mechanisms for each browser
capability

- Best packaging / sprite strategy for a user’s connectivity

- Accurate predictive loading based on usage patterns

Frontend Infrastructure: Static Resource Management System

Allow product engineers to move fast: 3D
- Simple Development process

- Quick Deployment

- Easy Debugging

Architecture

Interfaces

Back to Day 1:

Print CSS tag for feature A>
Print CSS tag for feature B>
Print CSS tag for feature C>
print HTML of feature A>
print HTML of feature B>

print HTML of feature C>

Print CSS tag for feature A>
I n te rfaces Print CSS tag for feature B>
Print CSS tag for feature C>
print HTML of feature A>
print HTML of feature B>

print HTML of feature C>

. Back to Day 1:

require_static(A_css); <render HTML of feature A>
require_static(B_css); <render HTML of feature B>

require_static(C_css);<render HTML of feature C>

render_page(shtmls); // deliver all CSS and render HTMLs

Print CSS tag for feature A>
I n te rfaces Print CSS tag for feature B>
Print CSS tag for feature C>
print HTML of feature A>
print HTML of feature B>

print HTML of feature C>

. Back to Day 1:

require_static(A_css); <render HTML of feature A>
require_static(B_css); <render HTML of feature B>

require_static(C_css);<render HTML of feature C>

Separate Declaration from actual Delivery

render_page(shtmls); // deliver all CSS and render HTMLs

Interfaces

. Back to Day 1:
require_static(A_css); <render HTML of feature A>
require_static(B_css); <render HTML of feature B>

require_static(C_css);<render HTML of feature C>

HTML rendering

render_page($Shtmls);

Global Optimization on
Delivery

\ Requirement
Declaration lives with

require_static(A_css); <render HTML of feature A>
Interfaces

require_static(B_css); <render HTML of feature B>

require_static(C_css);<render HTML of feature C>
A.CSS: render_page(shtmls);

A component name
separate from file

name
/**
\ * @provides A_css

* @requires Core_css

Direct dependencies for

" this component

* @author dwei

* @non-blocking Optional delivery
<€

*/ preference

Development and deployment process
The Life of JS/CSS/Images

Engineers
Designers End users
Static
Jcségés Resource —_— rsrc.phpl_) CDN
Management
System
/ Browserl
Script, style,
image info
Complete
HTML
PHP Content

Code HTML

Development and deployment process
The Life of JS/CSS/Images

Engineers
Designers End users
JS/CSS SR ——
Code Backend -PhP clpiy
l Browserl

SR Script, style,

Frontend image info
Complete
HTML
PHP Content
Code HTML

SR Management System
Backend:

- Dependency analysis

- Transforms: localization / minification

- Combinations: packaging / sprite

JS/CSS SR
Code l Backend rsrc.phpl >
Script,.style,
Frontend image info
Complete
.

Browserl

HTML

PHP Content
Code HTML

SR Management System
Backend:

- Dependency analysis
Component => URIs

- Transforms: localization / minification
URI => Data

- Combinations: packaging / sprite

JS/CSS SR
Code l Backend rsrc.phpl >
Script,.style,
Frontend image info
Complete
.

Browserl

HTML

PHP Content
Code HTML

SR Management System
Frontend:

- Component => URIs
- URI + user profile => delivery mechanisms

- static tags, async loading, packaging or not, ...

Backendl E rsrc.phpl > CDN

SR Script, style,

Frontend image info
Complete
HTML
PHP Content
Code > HTML

JS/CSS
Code

Browserl

Scalability

A website with so0o0M active users

10000+ static resources
- X 100+ language translations
- X 3 browser setups
- X 5 packaging strategies
- X 3 user AB testing groups
- X 2 delivery strategies (iframe / raw)

- X 2 minification strategies

- = 3,000,000 + different static resources

A website with so0o0M active users

10000+ static resources
- X 100+ language translations
- X 3 browser setups
- X 5 packaging strategies
- X 3 user AB testing groups
- X 2 delivery strategies (iframe / raw)

- X 2 minification strategies

- = 3,000,000 + different static resources

- Multiple revisions
- Released in 10 minutes

- Even more dimensions in

the future

Scaling the static resource system

- Describe a build process as a graph
- Node in the graph: data
- Initial parameters/ data (stubs)
- Results of a processing step (transits)

- Edgein the graph: dependencies between the processing steps
and the data

A “make” system for static resource: Example

(by Andrey Sukhachev & Levy Klots)

[core.js] =>“core.js”
| [primer.js] =>“primer.js”

A “make” system for static resource: Example

(by Andrey Sukhachev & Levy Klots)

mlme_translations

[core.js] =>“core.js”

| [primer.js] =>“primer.js”

@ [core.js] => “if (foo) §var id = document.getEl..”
[primer.js] =>“var goURI =function(uri,.”

A “make” system for static resource: Example

(by Andrey Sukhachev & Levy Klots)

mhne_translations

[min] =>“min”
[no_min] =>“no_min”

[core.js, min] => “if(a)ivar b=document.getEl.”
[core.js, no_min] => “if (foo) §var id = document.getEl..”
[primer.js, min] => “var a=function(b,..”
[primer.js, no_min] => “var goURI = function(uri,..”
[core.js] => “if (foo) §var id = document.getEl...” [min] =>“min”

[primer.js] =>“var goURI =function(uri,.” [no_min] =>“no_min”

A “make” system for static resource: Example

(by Andrey Sukhachev & Levy Klots)

CSS build graph: the most complex build

(by Andrey Sukhachev & Levy Klots) p_ess_pkg

4

font_increase

Corvenst)
a*=>
‘
e

sprites_expire

css_content

Static resource backend

- Simple development:

- Engineers develop one version of static resource;

- The build system builds 100+ versions of it for different users;
- Quick deployment:

- Real time for sandboxes

- Production deploy within 10 minutes

- Easy to add new dimensions

Adaptability

Case Study - Revisited

« One months later...

<Print CSS tag for feature A&B&C&D&E&F&G...>

Thousands of
if (F is used) <print HTML of feature F> dead CSS bytes in
the package.

<print HTML of feature G>

if (Fis not used) § <print HTML of feature E>}

Good Ideas, manual optimization not adaptable
« Packaging most often used files;

 Send these the references of these files ASAP

Case Study - Revisited
Optimization needs adaptability

* SR management system tracks change of usage patterns

* SR adapts its optimization strategies adaptively

Good Ideas, manual implementation not adaptable

« Packaging most often used files;

 Send these the references of these files ASAP

Packager: Global JS/CSS Optimization

require_static(A_css); <render HTML of A>
require_static(B_css); <render HTML of B>
require_static(C_css); <render HTML of C>

render_page(shtmls);

Packager: Global JS/CSS Optimization

Online API

require_static(A_css); <render HTML of A>
require_static(B_css); <render HTML of B>
require_static(C_css); <render HTML of C>

render_page(shtmls);

Offline analysis

Usage Pattern logs

Packaging algorithm

“Optimal” packages

Packager: Usage Pattern Logs

PageCount 10M 1M 100K 20K 10K

A.css (1 KB) 1 1 1 1 1 1
B.css (1 KB) 1 1 1 1 1 1
C.css (300B) 1 1 1

D.css (2 KB) 1 1
E.css (700B) 1 1 1
F.css (400B) 1 1

G.css (600B) 1 1 1 1 1

Usage Pattern logs

Packager: Cost/Benefit Model

Page 10000
Load

Page
Count

A.css (1
KB)

B.css (1
KB)

C.css
(300B)

D.css (2
KB)

E.css
(700B)

F.css
(400B)

G.css
(600B)

100

1

1

K
1

1

- To package two files A & B:

- “Cost”: for page requests that

only uses A, we waste the
bytes of B, vice versa

- “Benefit”: for page requests

that uses both A and B: we
save one round trip

- Bytes /Bandwidth ~ Latency

- “Profit” to be maximized:

Benefit - Cost

Packager: Cost/Benefit Model

ﬂﬂﬂﬂﬂl pandwidthe Mo
Load bandwidth = 1 Mbps

Page 1oo
Count M - A+B: 40ms *11.131M

.css (1 1 1 1 s R |

KB)

ss (1 1 1 1 R |

KB)

égzsé) LL No cost, pure gain.

[

D.css (2 1
KB)

E.css 1 1 1
(700B)

F.css 1 1
(400B)

Definitely package

G.css 1 1 1 1 1
(600B)

Packager: Cost/Benefit Model

ﬂﬂﬂﬂﬂl pandwidthe Mo
Load bandwidth = 1 Mbps
100

Page

Count M M - B+C: 40ms * 11.1M

A.css (1 1 1 1 s R | 1

KB) -300B/1Mbps *0.031M

.css (1 1 1 1 1 1 1
KB)
C.c 11 1 Benefit larger than cost

(300B)

D.css (2 1 OK to package
KB)

E.css 1 1 1

(700B)

F.css 1 1

(400B)

G.css 1 1 1 1 1

(600B)

Packager: Cost/Benefit Model

ﬂﬂﬂﬂﬂl pandwidthe Mo
Load bandwidth = 1 Mbps
100

Page

Count M M - B+D: 40ms * 1K

A.css (1 1 1 1 s R | 1

KB) -2K/1Mbps *11.13M
B.css (1 C 1 1 1)

KB)

C.css 1 1 1

Cost larger than benefit

(300B)

D.css (2 <) Don’t package
KB)

E.css 1 1 1

(700B)

F.css 1 1

(400B)

G.css 1 1 1 1 1

(600B)

Packager: Optimal packages

- Pkg1:A,B, C
ﬂﬂﬂlﬂl
— . Pkg 2:E, F, G

Page 1oo
Count
i Usage Pattern logs
1 1 1 1
1
Packaging algorithm
1
1 1
1 y “Optimal” packages

Adaptive Static Resource Optimization

Cross-feature optimizations (e.g. search + ads)

Adaptive to change of user behaviors and code developments

Similar technology works for image spriting (different cost
function for the extra sprite CSS)

Models can be improved for different TTI goals

Experiment: Adaptive Image Spriting
The puzzle of image spriting:

» Thousands of virtual gifts with static images, which to sprite?

W4 b

Experiment: Adaptive Image Spriting
The puzzle of image spriting:

e The answer is...

4)

"4\

& 21l

J

Adaptive to new usages

of JS/CSS Packages served in one month of 2009

B cavalry WorldWide.csspackages./home.php - cavaliy

13 @ I L L Ll I
“ jomo 1 I
fmimompmy Ll L] @
104 I’ [| ¢ 0y,
0
omp | I I [’
78 . | .’0-.......i.....-o....-o*..._...
= B
.-.-.-.-.-0-.1. [I ’
2 | | | :
[[[[
2.6
I I [I
I I I I
0
| Sun | | Sun | | Sun | | Sun | | Sun
Aug 16 Aug 23 Aug 30 Sep 6 Sep 13

L 7.8

- 5.2

2.6

When data go wrong

E cavalry.WorldWide.csspackages./home.php - cavalry

"TWed TWed Twed | [Wed TwWe:

Wec wec wec l [\
Jun 17 Jun 24 Jul 1 Jul 8 Jul 15 Jul 22

Aug S

Aug 12 Aug 19

Wed ‘ Wec ‘ Wed ‘ Wec
Jul 29 Aug 26 Sep 2 Sep 9

Conclusions

Static Resource Management

* Challenges:
- Easy to start, hard to make right;

- Particularly challenging for large scale web sites with heterogeneous users.

« Experience:

- Focus oninterface: good interface frees the engineers and provides high
leverage opportunities for global optimizations;

- Adaptability is important to ensure the web site is fast by default;

- Scalability is a must for large sites.

Thank you!

Xiaoliang “David” Wei
Facebook Inc.
www.facebook.com/DavidWei
DavidWei@acm.org

Velocity China, Dec 7t", 2010, Beijing

