
Static resource
 management & optimization

Velocity China, Dec 7th, 2010, Beijing

Xiaoliang “David” Wei
Facebook Inc.

www.facebook.com/DavidWei
DavidWei@acm.org

SR management & optimization
A major role in Web Performance

▪  12 out of 14 rules in “High Performance
Websites”

▪  Few HTTP requests

▪  Use Content Distribution Network

▪  …

▪  Half of the rules in “Even Faster Web Sites”

▪  Splitting Initial Payload

▪  Loading scripts without blockings

▪  …

1 The challenges & the dreams

2 Interface and architecture

3 Scalability

4 Adaptability

Agenda

Challenges & Dreams

Facebook: the largest social network
500+ million heterogeneous users around the world

▪  100+ languages translated by grass-root users

▪  10000+ browser varieties and changing (~8 browsers >1% market
shares)

▪  IPs from Large spectrum of latency and connectivity

▪  Different usage patterns (40K+ patterns of usages in major full
page end point)

Facebook: the largest social network
500+ million heterogeneous users around the world

▪  100+ languages translated by grass-root users

▪  10000+ browser varieties and changing (~8 browsers >1% market
shares)

▪  IPs from Large spectrum of latency and connectivity

▪  Different usage patterns (40K+ patterns of usages in major full
page end point)

▪  Summary: a large scale web site with high user variety

Performance optimization: Challenge
•  Example:

“Best Practices for Speeding Up You Web Site” – YSlow

Rule 1: Minimize HTTP Request

•  Concatenating files: Javscript and Stylesheets packaging

•  Images spriting

•  …

Performance optimization: Challenge
•  Day 1: Some smart engineers start a project!

<Print CSS tag for feature A>

<Print CSS tag for feature B>

<Print CSS tag for feature C>

<print HTML of feature A>

<print HTML of feature B>

<print HTML of feature C>

…

“Let’s write a
new page with
features A, B
and C!”

•  Day 2: One smart engineer read YUI blog and says…

<Print CSS tag for feature A>

<Print CSS tag for feature B>

<Print CSS tag for feature C>

<print HTML of feature A>

<print HTML of feature B>

<print HTML of feature C>

…

“A & B & C are
always used;
let’s package
them
together!”

Performance optimization: Challenge

•  Day 2: Awesome!

<Print CSS tag for feature A&B&C in a single package>

<print HTML of feature A>

<print HTML of feature B>

<print HTML of feature C>

…

Performance optimization: Challenge

•  Day 3: feature C evolves…

<Print CSS tag for feature A&B&C in a single package>

<print HTML of feature A>

<print HTML of feature B>

If (users_signup_for_C()) { <print HTML of feature C>}

…

Performance optimization: Challenge

•  Day 3: feature C evolves…

<Print CSS tag for feature A&B&C>

<print HTML of feature A>

<print HTML of feature B>

If (users_signup_for_C()) { <print HTML of feature C>}

…

A&B are always
used, while C is
not. ..

Performance optimization: Challenge

•  Day 4: feature C is deprecated

<Print CSS tag for feature A&B&C>

<print HTML of feature A>

<print HTML of feature B>

// no one uses C { <print HTML of feature C>}

…

Performance optimization: Challenge

•  Day 4: we start to send unused bits

<Print CSS tag for feature A&B&C>

<print HTML of feature A>

<print HTML of feature B>

// no one uses C { <print HTML of feature C>}

…

It is hard to
remember we
should remove C
here.

Performance optimization: Challenge

•  One month later…

<Print CSS tag for feature A&B&C&D&E&F&G…>

if (F is used) <print HTML of feature F>

<print HTML of feature G>

if (F is not used) { <print HTML of feature E>}

…

Thousands of
dead CSS bytes in
the package.

Performance optimization: Challenge

The dreams
 Fully customized user experience:

▪  Most suitable delivery mechanisms for each browser
capability

▪  Best packaging / sprite strategy for a user’s connectivity

▪  Accurate predictive loading based on usage patterns

 Allow product engineers to move fast: 3D

▪  Simple Development process

▪  Quick Deployment

▪  Easy Debugging

The dreams
 Fully customized user experience:

▪  Most suitable delivery mechanisms for each browser
capability

▪  Best packaging / sprite strategy for a user’s connectivity

▪  Accurate predictive loading based on usage patterns

 Allow product engineers to move fast: 3D

▪  Simple Development process

▪  Quick Deployment

▪  Easy Debugging

Frontend Infrastructure: Static Resource Management System

Architecture

Interfaces

•  Back to Day 1:

<Print CSS tag for feature A>

<Print CSS tag for feature B>

<Print CSS tag for feature C>

<print HTML of feature A>

<print HTML of feature B>

<print HTML of feature C>

Interfaces

•  Back to Day 1:

require_static(A_css); <render HTML of feature A>

require_static(B_css); <render HTML of feature B>

require_static(C_css);<render HTML of feature C>

render_page($htmls); // deliver all CSS and render HTMLs

<Print CSS tag for feature A>

<Print CSS tag for feature B>

<Print CSS tag for feature C>

<print HTML of feature A>

<print HTML of feature B>

<print HTML of feature C>

Interfaces

•  Back to Day 1:

require_static(A_css); <render HTML of feature A>

require_static(B_css); <render HTML of feature B>

require_static(C_css);<render HTML of feature C>

render_page($htmls); // deliver all CSS and render HTMLs

<Print CSS tag for feature A>

<Print CSS tag for feature B>

<Print CSS tag for feature C>

<print HTML of feature A>

<print HTML of feature B>

<print HTML of feature C>

Separate Declaration from actual Delivery

Interfaces

•  Back to Day 1:

require_static(A_css); <render HTML of feature A>

require_static(B_css); <render HTML of feature B>

require_static(C_css);<render HTML of feature C>

render_page($htmls);

Global Optimization on
Delivery

Requirement
Declaration lives with
HTML rendering

Interfaces

A.css:

/**
 * @provides A_css
 * @requires Core_css
 *
 * @author dwei
 * @non-blocking
 */

A component name
separate from file
name

Direct dependencies for
this component

Optional delivery
preference

require_static(A_css); <render HTML of feature A>

require_static(B_css); <render HTML of feature B>

require_static(C_css);<render HTML of feature C>

render_page($htmls);

Development and deployment process

PHP
Code

Content
HTML

JS/CSS
Code

Haste
Backend

Complete
HTML

Script, style,
image info

The Life of JS/CSS/Images

 Engineers
Designers End users

Browser

CDN rsrc.php

Haste
Fronten
d

Static
Resource
Management
System

Development and deployment process

PHP
Code

Content
HTML

JS/CSS
Code

SR
Backend

Complete
HTML

Script, style,
image info

The Life of JS/CSS/Images

 Engineers
Designers End users

Browser

CDN rsrc.php

SR
Frontend

SR Management System

PHP
Code

Content
HTML

JS/CSS
Code

SR
Backend

Complete
HTML

Script, style,
image info

Browser

CDN rsrc.php

SR
Frontend

Backend:

▪  Dependency analysis

▪  Transforms: localization / minification

▪  Combinations: packaging / sprite

SR Management System

PHP
Code

Content
HTML

JS/CSS
Code

SR
Backend

Complete
HTML

Script, style,
image info

Browser

CDN rsrc.php

SR
Frontend

Backend:

▪  Dependency analysis

▪  Transforms: localization / minification

▪  Combinations: packaging / sprite

Component => URIs

URI => Data

SR Management System

PHP
Code

Content
HTML

JS/CSS
Code

SR
Backend

Complete
HTML

Script, style,
image info

Browser

CDN rsrc.php

SR
Frontend

Frontend:

▪  Component => URIs

▪  URI + user profile => delivery mechanisms

▪  static tags, async loading, packaging or not, …

Scalability

A website with 500M active users
Dimensions of parameters

▪  10000+ static resources

▪  x 100+ language translations

▪  x 3 browser setups

▪  x 5 packaging strategies

▪  x 3 user AB testing groups

▪  x 2 delivery strategies (iframe / raw)

▪  x 2 minification strategies

▪  = 3,000,000 + different static resources

A website with 500M active users
Dimensions of parameters

▪  10000+ static resources

▪  x 100+ language translations

▪  x 3 browser setups

▪  x 5 packaging strategies

▪  x 3 user AB testing groups

▪  x 2 delivery strategies (iframe / raw)

▪  x 2 minification strategies

▪  = 3,000,000 + different static resources

To support

▪  Multiple revisions

▪  Released in 10 minutes

▪  Even more dimensions in
the future

Scaling the static resource system
A “make” approach

▪  Describe a build process as a graph

▪  Node in the graph: data

▪  Initial parameters / data (stubs)

▪  Results of a processing step (transits)

▪  Edge in the graph: dependencies between the processing steps
and the data

A “make” system for static resource: Example

[core.js] => “core.js”
[primer.js] => “primer.js”
…

(by Andrey Sukhachev & Levy Klots)

A “make” system for static resource: Example

[core.js] => “core.js”
[primer.js] => “primer.js”
…

[core.js] => “if (foo) {var id = document.getEl…”
[primer.js] => “var goURI = function(uri,..”
…

(by Andrey Sukhachev & Levy Klots)

A “make” system for static resource: Example

[core.js, min] => “if(a){var b=document.getEl..”
[core.js, no_min] => “if (foo) {var id = document.getEl…”
[primer.js, min] => “var a=function(b,..”
[primer.js, no_min] => “var goURI = function(uri,..”
…

[min] => “min”
[no_min] => “no_min”

[core.js] => “if (foo) {var id = document.getEl…”
[primer.js] => “var goURI = function(uri,..”
…

[min] => “min”
[no_min] => “no_min”

(by Andrey Sukhachev & Levy Klots)

A “make” system for static resource: Example
(by Andrey Sukhachev & Levy Klots)

CSS build graph: the most complex build
(by Andrey Sukhachev & Levy Klots)

Static resource backend

Allow product engineers to move fast

▪  Simple development:

▪  Engineers develop one version of static resource;

▪  The build system builds 100+ versions of it for different users;

▪  Quick deployment:

▪  Real time for sandboxes

▪  Production deploy within 10 minutes

▪  Easy to add new dimensions

Adaptability

•  One months later…

<Print CSS tag for feature A&B&C&D&E&F&G…>

if (F is used) <print HTML of feature F>

<print HTML of feature G>

if (F is not used) { <print HTML of feature E>}

…

Thousands of
dead CSS bytes in
the package.

Case Study – Revisited

Good Ideas, manual optimization not adaptable

•  Packaging most often used files;

•  Send these the references of these files ASAP

Optimization needs adaptability

•  SR management system tracks change of usage patterns

•  SR adapts its optimization strategies adaptively

Case Study – Revisited

Good Ideas, manual implementation not adaptable

•  Packaging most often used files;

•  Send these the references of these files ASAP

Packager: Global JS/CSS Optimization

Online API

require_static(A_css); <render HTML of A>

require_static(B_css); <render HTML of B>

require_static(C_css); <render HTML of C>

render_page($htmls);

Offline analysis

Packager: Global JS/CSS Optimization

Online API

require_static(A_css); <render HTML of A>

require_static(B_css); <render HTML of B>

require_static(C_css); <render HTML of C>

render_page($htmls);

Usage Pattern logs

Packaging algorithm

“Optimal” packages

Packager: Usage Pattern Logs

Usage Pattern logs

Page Load 1 2 3 4 5 … 100000

Page Count 10 M 1 M 100 K 20 K 10 K 1K

A.css (1 KB) 1 1 1 1 1 1

B.css (1 KB) 1 1 1 1 1 1

C.css (300B) 1 1 1

D.css (2 KB) 1 1

E.css (700B) 1 1 1

F.css (400B) 1 1

G.css (600B) 1 1 1 1 1

Packager: Cost/Benefit Model

▪  To package two files A & B:

▪  “Cost”: for page requests that
only uses A, we waste the
bytes of B, vice versa

▪  “Benefit”: for page requests
that uses both A and B: we
save one round trip

▪  Bytes / Bandwidth ~ Latency

▪  “Profit” to be maximized:
 Benefit – Cost

Page
Load

1 2 3 4 5 … 10000
0

Page
Count

10
M

1
M

100
K

20
K

10
K

1K

A.css (1
KB)

1 1 1 1 1 1

B.css (1
KB)

1 1 1 1 1 1

C.css
(300B)

1 1 1

D.css (2
KB)

1 1

E.css
(700B)

1 1 1

F.css
(400B)

1 1

G.css
(600B)

1 1 1 1 1

Page
Load

1 2 3 4 5 … 10000
0

Page
Count

10
M

1
M

100
K

20
K

10
K

1K

A.css (1
KB)

1 1 1 1 1 1

B.css (1
KB)

1 1 1 1 1 1

C.css
(300B)

1 1 1

D.css (2
KB)

1 1

E.css
(700B)

1 1 1

F.css
(400B)

1 1

G.css
(600B)

1 1 1 1 1

Packager: Cost/Benefit Model

▪  Assume: latency = 40ms, and
bandwidth = 1 Mbps

▪  A+B: 40ms * 11.131M

 No cost, pure gain.

 Definitely package

Page
Load

1 2 3 4 5 … 10000
0

Page
Count

10
M

1
M

100
K

20
K

10
K

1K

A.css (1
KB)

1 1 1 1 1 1

B.css (1
KB)

1 1 1 1 1 1

C.css
(300B)

1 1 1

D.css (2
KB)

1

E.css
(700B)

1 1 1

F.css
(400B)

1 1

G.css
(600B)

1 1 1 1 1

Packager: Cost/Benefit Model

▪  Assume: latency = 40ms, and
bandwidth = 1 Mbps

▪  B+C: 40ms * 11.1M

 – 300B / 1Mbps * 0.031M

 Benefit larger than cost

 OK to package

Page
Load

1 2 3 4 5 … 10000
0

Page
Count

10
M

1
M

100
K

20
K

10
K

1K

A.css (1
KB)

1 1 1 1 1 1

B.css (1
KB)

1 1 1 1 1 1

C.css
(300B)

1 1 1

D.css (2
KB)

1

E.css
(700B)

1 1 1

F.css
(400B)

1 1

G.css
(600B)

1 1 1 1 1

Packager: Cost/Benefit Model

▪  Assume: latency = 40ms, and
bandwidth = 1 Mbps

▪  B+D: 40ms * 1K

 – 2K / 1Mbps * 11.13M

 Cost larger than benefit

 Don’t package

Packager: Optimal packages

Usage Pattern logs

Packaging algorithm

“Optimal” packages

Page
Load

1 2 3 4 5 … 10000
0

Page
Count

10
M

1
M

100
K

20
K

10
K

1K

A.css (1
KB)

1 1 1 1 1 1

B.css (1
KB)

1 1 1 1 1 1

C.css
(300B)

1 1 1

D.css (2
KB)

1

E.css
(700B)

1 1 1

F.css
(400B)

1 1

G.css
(50B)

1 1 1 1 1

▪  Pkg 1: A, B, C

▪  Pkg 2: E, F, G

Adaptive Static Resource Optimization
Adaptive Packaging / Spriting

•  Cross-feature optimizations (e.g. search + ads)

•  Adaptive to change of user behaviors and code developments

•  Similar technology works for image spriting (different cost
function for the extra sprite CSS)

•  Models can be improved for different TTI goals

Experiment: Adaptive Image Spriting
The puzzle of image spriting:

•  Thousands of virtual gifts with static images, which to sprite?

Experiment: Adaptive Image Spriting
The puzzle of image spriting:

•  The answer is…

Adaptive to new usages
of JS/CSS Packages served in one month of 2009

When data go wrong

Conclusions

Static Resource Management
A major component in Web performance

•  Challenges:

•  Easy to start, hard to make right;

•  Particularly challenging for large scale web sites with heterogeneous users.

•  Experience:

•  Focus on interface: good interface frees the engineers and provides high
leverage opportunities for global optimizations;

•  Adaptability is important to ensure the web site is fast by default;

•  Scalability is a must for large sites.

Thank you!

Velocity China, Dec 7th, 2010, Beijing

Xiaoliang “David” Wei
Facebook Inc.

www.facebook.com/DavidWei
DavidWei@acm.org

