
Front-end Performance 
Improvements at 
YouTube
Progressive Enhancement and Beyond

Alex Nicksay
Senior Web Developer, YouTube





2 billion views every day

35 hours of uploads every minute



A Performance Goal

Start Playing Video
As Soon As Possible



Performance Optimization #1

JavaScript at the Bottom
and

Embedding Flash



Embedding Flash (Before)

1: Load JavaScript

2: Determine Flash Version
3: Write Embed

4: Load Flash Player

5: Load Video

Red outlines denote 
blocking JavaScript



Embedding Flash

 Realization:
- Most visitors fall into one of two categories:
- They have a recent version of Flash installed
- They do not have Flash installed

 Optimization:
- Optimistically embed the most common case without JS 

and do version checking and player updating at the 
bottom of the page when scripts load



Embedding Flash (After)

Text

1: Load Flash Player

2: Load Video

3: Load JavaScript

4: Determine Flash Version
5: Update Embed (if needed)Red outlines denote 

blocking JavaScript



Impact on Performance

Time to Parse Document Head

Average: JS at Top (Before) =  ~400 ms

Average: JS at Bottom (After) =  ~250 ms Reduction = ~250 ms



Impact on Performance

Time until Flash Starts

Average: JS at Top (Before) =  ~1200 ms

Average: JS at Bottom (After) =  ~1100 ms Reduction = ~100 ms



Performance Optimization #2

Preloading the Video Connection



Preloading the Video Connection

 Why do it?
- Making new connections can be expensive
- Video download can begin sooner by preloading the 

connection



Preloading the Video Connection

 How do you do it?

<head>
  <script>
    var img = new Image();
    img.src = videoConnectionUrl;
  </script>
</head>



Preloading the Video Connection

 What does it do?
- Resolves DNS while page is rendering, before it is 

needed
- Maintains an open connection for later use



Impact on Page Load

Timeline of Resources Loaded

Video Connections
Loading the connection 
the first time takes 
several times longer 
than the second time



Impact on Performance

Time until Video Download Begins

50th Percentile: Reduction = ~180 ms

Average: Reduction = ~260 ms



Performance Optimization #3

Feather: Lightweight Version



Feather: Lightweight Version

Watch (Standard Version)

Feather (Lightweight Version)



Feather: Lightweight Version

Suggestions 
are limited to 
reduce HTML 
and IMG load



Feather: Lightweight Version

Comments are read-only and limited 
to a single page to reduce HTML, 
JS, and CSS load



Feather: Lightweight Version

Video Information and 
Actions are limited to 
reduce JS and CSS load



Feather: Lightweight Version

0 KB

50 KB

100 KB

150 KB

200 KB

Watch
Feather

HTML CSS JS IMG

Sizes of Resources Loaded



Impact on Performance

Time to Load Page

Feather (Lightweight Version) =  ~1100 ms

Watch (Standard Version) =  ~1750 ms

Reduction = ~650 ms



Progressive Enhancement

UIX Widget System



UIX Widget System

 Delay-loading non-essential content and resources 
increases performance

 Traditionally, interactive widgets are rendered by JS, 
requiring scripts to be loaded before page rendering

 Traditionally, each new piece of dynamically loaded content 
needs to have JS initialization

 What do we need?
- Lightweight framework for fast, easy, dynamic loading of 

new content (HTML) and new widgets (CSS/JS)



UIX Widget System

 What is it?
- A  centrally-managed, delegated-behavior widget system
- Separates content (HTML) from interaction (JS)

 What does that mean?
- JS can be delay-loaded after the page is rendered
- New widgets can be registered at any time
- New HTML can be dynamically updated at any time

- Event handling is automatic
- Widgets in new content work immediately



Demo

UIX Widget System



UIX
Widget

UIX
Widget

UIX
Widget

UIX
Widget

UIX Widget System: Architecture

UIX
Behaviors

Event
Bubbling

Event
Handling Class

Matching

Action
Execution



UIX
Widget

UIX
Widget

UIX
Widget

UIX
Widget

UIX Widget System: Behaviors

UIX
Behaviors

Event
Bubbling

Event
Handling Class

Matching

Action
Execution



UIX Widget System: Behaviors

UIX
Behaviors

 A registry stores “behaviors”

 A behavior is an action that is executed any 
time an event happens on a type of element

 A behavior has three components:
- What:    a JS function to execute
- Where:   a CSS class to match
- When:   a JS event to handle



UIX Widget System: Behaviors

UIX
Behaviors

// Sample registry

uix.registry = {
  'click': {
    'widget1-css': widget1.onClick,
    'widget2-css': widget2.onClick
  },
  'mouseover': {
    'widget2-css': widget2.onMouseover
  },
  'mouseout': {
    'widget2-css': widget2.onMouseout
  }
};



UIX
Widget

UIX
Widget

UIX
Widget

UIX
Widget

UIX Widget System: Behaviors

UIX
Behaviors

Event
Bubbling

Event
Handling Class

Matching

Action
Execution



UIX Widget System: Behaviors

UIX
Behaviors

 Events bubble to the top of the document

 A single event handler manages multiple 
browser events



UIX Widget System: Behaviors

UIX
Behaviors

// Sample event listeners

document.addEventListener(
          'click', uix.handleEvent);
document.addEventListener(
          'mouseover', uix.handleEvent);
document.addEventListener(
          'mouseout', uix.handleEvent);



UIX
Widget

UIX
Widget

UIX
Widget

UIX
Widget

UIX Widget System: Behaviors

UIX
Behaviors

Event
Bubbling

Event
Handling Class

Matching

Action
Execution



UIX Widget System: Behaviors

UIX
Behaviors

 The event handler matches the JS event 
with CSS classes in the registry to execute 
the actions of behaviors



UIX Widget System: Behaviors

UIX
Behaviors

// Sample event handler

uix.handleEvent = function(evt) {
 if (evt.type in uix.registry) {
  var actions = uix.registry[evt.type];
  for (var css in actions) {
   var el = findNodeOrParentWithClass(
                       evt.target, css);
   if (el) {
    actions[css](el, evt);
   }
  }
 }
};



UIX
Widget

UIX
Widget

UIX
Widget

UIX
Widget

UIX Widget System: Widgets

UIX
Behaviors

Event
Bubbling

Event
Handling Class

Matching

Action
Execution



UIX Widget System: Widgets

 The JS for a widget is a collection of related 
functions that act on an HTML element in 
response to events

 The HTML for a widget is an element with a 
specific CSS class

UIX
Widget



UIX Widget System: Widgets

UIX
Widget

// Sample widget function

widget1.onClick = function(el, evt) {
  if (hasClass(el, 'active') {
    removeClass(el, 'active');
  } else {
    addClass(el, 'active');
  }
};

// Sample widget structure

<span class="widget1-css">...</span>



UIX
Widget

UIX
Widget

UIX
Widget

UIX
Widget

UIX Widget System: Delay-Loading

UIX
Behaviors

Event
Bubbling

Event
Handling Class

Matching

Action
Execution



UIX Widget System: Delay-Loading

 Dynamically add new widgets by 
registering new behaviorsUIX

Widget
UIX

Widget

UIX
Widget

UIX
Widget



UIX Widget System: Delay-Loading

UIX
Widget

UIX
Widget

UIX
Widget

UIX
Widget

// Sample register function

uix.register = function(css, type, fn) {
  if (!(type in uix.registry)) {
    uix.registry[type] = {};
  }
  uix.registry[type][css] = fn;
};



UIX
Widget

UIX
Widget

UIX
Widget

UIX
Widget

UIX Widget System: Architecture

UIX
Behaviors

Event
Bubbling

Event
Handling Class

Matching

Action
Execution



Demo

UIX Widget System



Summary

 Performance Optimization #1
    JavaScript at the Bottom and Embedding Flash

 Performance Optimization #2
    Preloading the Video Connection

 Performance Optimization #3
    Feather: Lightweight Version

 Progressive Enhancement
    UIX Widget System



Thank You

Slides and Demos
http://alexnicksay.com/velocitychina/

http://alexnicksay.com/velocitychina2010/
http://alexnicksay.com/velocitychina2010/

